Refine Your Search

Topic

Author

Search Results

Technical Paper

U.S. Lab-A Module Cabin Air Distribution in Space Station

1993-07-01
932192
This paper presents the basic test data obtained from tests of a cabin air distribution system in a simulated Space Station U.S. Lab-A module. The cabin air distribution system controls the flow of air in the open space of a Space Station module. In order to meet crew comfort criteria the local velocities for this cabin air are required to be distributed within a specified range with upper and lower limits. Achieving this desired velocity distribution is dependent upon the: (1.) design of the cabin air supply equipment and cabin air return equipment, (2.) total flowrate of air supplied to and subsequently returned from the cabin, and (3.) interactive effects of any other additional air flow streams which enter and exit the cabin. The basic Space Station design for the cabin air supply and air return equipment was used in this test program. Only directional adjustments to vanes in supply air diffusers were made during the test.
Technical Paper

The United States SST and Air Quality

1971-02-01
710320
The feasibility of commercial supersonic flight has been questioned on the basis of air pollution and an alleged potential for altering the world's climate and weather. A study conducted by Boeing reveals no basis for any of these claims. However, in some cases more data are required to show there is no effect.
Technical Paper

The Pilot and the Flight Management System

1982-02-01
821386
This paper addresses the question of whether automation is being used in the proper applications in aircraft in order to maximize aircraft capabilities and make the most of human performance capacity. It is believed that the aircraft designers, while employing automation, have given due regard to the pilot's role as operator and manager of the aircraft. There does, however, seem to be valid concern for the human element in certain aspects of the air traffic control system.
Technical Paper

The Design of The U. S. SST for Low Community Noise

1970-02-01
700808
The need for achievement of low community noise levels has had a major influence on the configuration selected for the United States Supersonic Transport (Boeing 2707-300). The selection and development of design features which affect community noise are presented. The configuration has a relatively large span delta wing of moderate sweep and wing loading, with full span leading and trailing edge flaps. An all moving horizontal tail with geared flap is used for trim and control. The use of an unusually far aft center of gravity range is achieved through a fulltime stability augmentation system. All of these design features contribute to low drag at high lift, resulting in high takeoff performance and low levels of thrust required during flight over the community during both takeoff and landing. The resulting airplane has the versatility to use operational techniques which further reduce noise.
Technical Paper

Test Results of the Effects of Air Ionization on Cigarette Smoke Particulate Levels Within a Commercial Airplane

1992-07-01
921183
Passengers and flight attendants often notice a haze of smoke under the overhead stowage bins in aircraft cabins when cigarette smoking is allowed. As normally operated, the ventilation system in Boeing 737/757 aircraft does not rapidly remove this smoke haze. Air ionization systems from three vendors were tested in a 10 foot long Boeing 737/757 cabin test section with a cruise condition ventilation rate and two cigarette smoking rates to assess their effectiveness in removing smoke haze from the local breathing areas of passengers and flight attendants. Smoke particulate densities were monitored at five breathing areas and at an exit grill in the test section. All of the ionization systems significantly increased the rate of smoke removal after smoking had stopped, increasing the removal rate by about 25%. None of the systems showed a statistically significant reduction of smoke levels at the individual monitoring points while cigarettes were being smoked.
Technical Paper

Temperature Control Analysis for the U.S. Lab, Node 1, and Elements Attached to Node 1

1997-07-14
972564
The International Space Station (ISS) Temperature and Humidity Control (THC) system has been designed with the intent of supplying the air cooling needs of various elements from the U.S. Lab heat exchanger assembly. Elements without independent air cooling capability are known as “parasitic” elements; these are Node 1, the Cupola, and the Mini Pressurized Logistics Module (MPLM). Analysis results are presented which show expected temperatures in the MPLM, and Node 1, as various heat loads are present in the respective elements. Analyses within this paper are coordinated with the results obtained from the Development Test of the complex USL/Node 1 integrated ducting system. This test was conducted in the summer of 1995, at the McDonnell Douglas test facility in Huntington Beach, California.
Technical Paper

Specification Reform of Avionics Thermal Design Criteria – An F-15 Case Study

2001-07-09
2001-01-2156
Traditional thermal design criteria for avionics equipment are reviewed. Several studies have recently been conducted on the F-15 to assess accuracy of these design criteria. An overview of the study approach and results are presented. Specific topics investigated include: emergency cooling air provisions, cold start-up, hot start-up, normal and transient bay temperatures, and altitude design. The results indicate that many existing design criteria are overly conservative. The study findings suggest that reform of the existing thermal specification process is needed. Many of these reforms are applicable to the general aerospace industry and may result in significant acquisition cost savings as a result of the trend toward usage of commercial electronic parts. The reforms suggested include a new performance based thermal specification approach that increases emphasis on aircraft usage and frequency of occurrence. New transient design criteria are also recommended.
Technical Paper

Space Station THC/IMV Development Test/Analysis Correlations and Flight Predictions

1997-07-14
972565
The International Space Station (ISS) Temperature and Humidity Control/Intermodule Ventilation (THC/IMV) system for the U.S. Lab provides required cooling air for the U.S. Lab and also provides “parasitic” cooling air for Node 1 and its attached elements. This scheme provides cooled air from the Lab THC directly to Node 1 and also to elements attached to Node 1, at different stages of Space Station assembly. A development test of the U.S. Lab and Node 1/attached elements' integrated THC/IMV ducting system was performed in the summer of 1995. This test included the U.S. Lab's development level Common Cabin Air Assembly (CCAA), which removes sensible and latent heat from the circulated and ducted cabin air. A referenced 1996 ICES Paper contains the initial correlation results. An analytical model has been developed, which has been used to predict flow and pressure drop performance of the system for several potential and actual changes from the Development Test configuration.
Technical Paper

Space Station Lab Flight Test Article Results and Analytical Model Correlations

1999-07-12
1999-01-2196
The International Space Station (ISS) Temperature and Humidity Control/Intermodule Ventilation (THC/IMV) system for the U.S. Lab provides required cooling air for the U.S. Lab and also provides “parasitic” cooling air for Node 1 and its attached elements. This scheme provides cooled air from the Lab THC directly to Node 1 and also to elements attached to Node 1, at different stages of Space Station assembly. This paper reports on the results of Open Hatch ECLSS/ TCS Tests for International Space Station’s Lab Module. The hardware tested is referred to as proto-flight hardware. Upon satisfactorily passing these Open Hatch and later Closed Hatch, imposed ground based, proto-flight tests, the proto-flight hardware will become flight hardware. The Lab Module is scheduled for launch during late 1999. The particular ECLSS/TCS equipment discussed here are the Temperature Humidity and Control (THC) equipment and Intermodule Ventilation (IMV) equipment.
Technical Paper

Radar Detection of Turbulence in the Upper Troposphere

1966-02-01
660187
Encounters of jet aircraft with high altitude turbulence prompted the investigation of various techniques to probe and locate turbulence in areas lacking particles (rain drops, hailstones). A promising technique is to measure the radio refractive eddies and gradients by radar backscatter. Radio refractive index eddies can, in principle, be found where an atmosphere characterized by a nonadiabatic lapse rate of refractive index is stirred up by turbulence. A sequence of VHF backscatter experiments which will hopefully lead up to an airborne CAT detector are presented in this paper.
Technical Paper

Potentials for Advanced Civil Transport Aircraft

1973-02-01
730958
In this lecture, a review of Boeing commercial transport models is presented in chronological order from the B-1 flying boat of 1919 to the 747. The problems of air transport systems including convenience, reliability, safety, comfort, performance, and financial and environmental costs are discussed. The probability of more severe future problems is considered, and suggestions are offered as to technology and system improvements which may need to be pursued if civil air transport systems are to continue to provide fast, convenient transportation with a high level of public acceptance.
Technical Paper

Payload Attach System for the ISS - Development and Verification for EVA Operations

1999-07-12
1999-01-2037
The process of developing a Payload Attach System (PAS) which will support a wide range of experimental and commercial payloads on the International Space Station (ISS) has experienced an interesting evolution during its design, development, test and evaluation (DDT&E) phase. This evolution has been caused in large measure by requirements intended to insure compatibility of the PAS with the extravehicular activity (EVA) crewmember during nominal and contingency operations in and around the PAS sites. As the design of the ISS transitioned from its Freedom predecessor, the effort to keep costs down by preserving as much of the original Freedom design as possible led to design decisions that challenged engineering thinking.
Technical Paper

Parametric Relationships of Factors Affecting Maintainability of Long Duration Manned Space Flights

1967-02-01
670665
There are many parameters which influence the maintainability of long duration manned space flights. This study involved a detailed investigation of the sensitivity of some of the major parameters on a typical 1975 near earth orbit spacecraft and mission. A mechanized analytical math model and a mission simulation model were utilized to evaluate the effects of: spacecraft system weight, volume and reliability; mission duration and resupply rate; and maintenance requirements on the total spacecraft requirements to achieve various probabilities of crew survival and mission success. Preliminary information developed in the NAS 2-3705 contract is presented. The results obtained to date are given, but specific conclusions will not be made until the study is completed.
Technical Paper

Non-Linear Aeroelastic Predictions for Transport Aircraft

1990-09-01
901852
A loosely coupled method for aeroelastic predictions of aircraft configurations is shown. This method couples an advanced structural analysis method with a CFD aerodynamics code in a modular fashion. This method can use almost any CFD code, so a validation of several such codes is shown to establish regions of validity for each code. Results from potential codes, an Euler code, and a Navier-Stokes code are shown in comparison with experiment. Viscous effects are included in most cases through a coupled boundary-layer solver or a turbulence model as appropriate.
Technical Paper

Noise Implications for VTOL Development

1970-02-01
700286
Noise from the aircraft may prevent the establishment of VTOL ports near population centers-the locations which can provide a significant contribution to mass transportation. To determine how annoying these aircraft may be, a total community annoyance measure (TCAM) has been developed. The TCAM can indicate flight trajectories which minimize the annoyance of the aircraft and the type of aircraft which are acoustically acceptable for operations from a V/STOL port. Low disc loading rotors seem best for operation near terminals while low tip speed propellers are best for cruise.
Technical Paper

Modular Rack Design for Multiple Users

1994-06-01
941587
The Space Station program was faced with a unique design environment-to design a common systems and payload support structure that could accommodate changeout for repair or technology growth over a 30-year lifetime. The vibration environment and weight allocation for rack structure necessitated a lightweight, yet stiff structure. The design answer was a modular rack structure using graphite/epoxy composites and selected aluminum components that could support a wide variety of systems, payload and stowage functions. A modular set of mounting locations allow the installation of a wide variety of secondary structures without permanent modifications to the rack. Aircraft-style seat track rails on the front edges of the rack permit attachment of handrails, foot restraints and accessories such as lights, fans, clipboards or computers to the rack face.
Technical Paper

Meteoroid Design Criteria

1965-02-01
650786
The effects of meteoroid protection weight requirements on space exploration costs are examined. A basis is developed for selecting upper and lower bounds to the acceptable risk. The quality of present knowledge of the meteoroid environment and of hypervelocity impact penetration is reviewed. This information is synthesized and criteria are developed that are suitable for selecting methods of designing simple and composite barrier systems. Techniques are established for controlling damage to spacecraft components. Short and long term goals are recommended to improve present design capability.
Technical Paper

Managing the Technical Development of the 727

1962-01-01
620464
Studies in a jet passenger airliner to service shorter routes than those of the Boeing 707 evolved the concept of a rear mounted three engine jet, the 727. The development program had many facets, including extensive use of mockups, customer influence on design through liaison, cost control, and a considerable amount of work on the design of the tail and location and number of engines on the craft.
Technical Paper

International Space Station Propulsion Module Environmental Control and Life Support System

2000-07-10
2000-01-2296
The United States Propulsion Module (USPM) is a pressurized element and provides reboost, propulsive attitude control, control moment gyro (CMG) desaturation, and collision avoidance functions for the International Space Station (ISS). The USPM will dock with Node 2 at the pressurized mating adapter-2 (PMA-2). After docking with PMA-2, the USPM will provide mechanical and structural interfaces to the Space Shuttle, along with facilities for crew transfer and receiving resupply oxygen, nitrogen, water, helium, and propellants from the Space Shuttle. It is essential that the USPM maintain a safe and functional life support system during crew member passage and maintenance activities. It is complex and costly to design an operational system to satisfy all ISS requirements. This paper details an innovative USPM environmental control and life support system (ECLSS) design that satisfies all ISS requirements at a reduced cost.
Technical Paper

International Space Station Design for Dexterous Robotics - Inboard Truss Segments

2000-07-10
2000-01-2357
Over 200 International Space Station external high maintenance items have been designed for replacement by a dexterous robotics system in addition to space-suited astronauts. Planning for dexterous robotics maintenance increases flexibility for space station operations with a robot able to execute many tasks in place of a suited crew member, lowering the number of hours crew must spend on Extravehicular Activity (EVA). The five inboard truss segments of the station - S3, S1, S0, P1 and P3 - include 122 of these robot compatible maintenance items or On-orbit Replaceable Units (ORUs). This paper describes the impact robotic compatibility has had on the International Space Station (ISS) design, reviewing the inboard truss items as examples. Diverse challenges exist to verify each genre of ORU meets the dexterous robotics requirements.
X