Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Technical Paper

The Effect of Heavy Loads on Light Duty Vehicle Axle Operating Temperature

2005-10-24
2005-01-3893
With the continued growth of the sport utility vehicle (SUV) market in North America in recent years more emphasis has been placed on fluid performance in these vehicles. In addition to fuel economy the key performance area sought by original equipment manufacturers (OEMs) in general has been temperature reduction in the axle. This is being driven by warranty claims that show that one of the causes of axle failure in these type vehicles is related to overheating. The overheating is, in turn, caused by high load situations, e.g., pulling a large trailer at or near the maximum rated load limit for the vehicle, especially when the vehicle or its main subcomponents are relatively new. The excessive temperature generally leads to premature failure of seals, bearings and gears. The choice of lubricant can have a significant effect on the peak and stabilized operating temperature under these extreme conditions.
Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Evaluating the Impact of Oil Viscoelasticity on Bearing Friction

2023-10-31
2023-01-1648
In this work, a novel bearing test rig was used to evaluate the impact of oil viscoelasticity on friction torque and oil film thickness in a hydrodynamic journal bearing. The test rig used an electric motor to rotate a test journal, while a hydraulic actuator applied radial load to the connecting rod bearing. Lubrication of the journal bearing was accomplished via a series of axial and radial drillings in the test shaft and journal, replicating oil delivery in a conventional engine crankshaft. Journal bearing inserts from a commercial, medium duty diesel engine (Cummins ISB) were used. Oil film thickness was measured using high precision eddy current sensors. Oil film thickness measurements were taken at two locations, allowing for calculation of minimum oil film thickness. A high-precision, in-line torque meter was used to measure friction torque. Four test oils were prepared and evaluated.
Technical Paper

Development of Next-Generation Automatic Transmission Fluid Technology

2007-10-29
2007-01-3976
Global original equipment manufacturers (OEMs) have requested lower viscosity automatic transmission fluid (ATF) for use in conventional and 6-speed automatic transmissions (AT) to meet growing demands for improved fuel economy. While lower-viscosity ATF may provide better fuel economy by reducing churning losses, other key performance attributes must be considered when formulating lower viscosity ATF(1,2). Gear and bearing performance can be key concerns with lower-viscosity ATFs due to reduced film thickness at the surfaces. Long-term anti-shudder performance is also needed to enable the aggressive use of controlled slip torque converter clutches that permit better fuel economy. And, friction characteristics need to be improved for higher clutch holding capacity and good clutch engagement performance. This paper covers the development of next-generation, low-viscosity ATF technology, which provides optimum fuel economy along with wear and friction durability.
Technical Paper

Clutch System Evaluation and Failure Diagnosis: Chemical and Physical Effects

2020-09-11
2020-01-5077
Wet clutch friction performance has historically been visualized by multiple graphs due to the number of temperatures and pressures required to characterize the system. However, this same friction performance can be visualized by a single graph using an alternative approach to map the friction data. Applying a method similar to that used to develop the Stribeck curve for journal bearings, a single system-level graph for wet clutches can be created. This paper will highlight how this visualization method, particularly when used to diagnose clutch failures, provides benefits in understanding the effects of both the friction material and the lubricant performance. We conducted extensive studies comparing ideal clutch systems with failed ones under a variety of conditions. Lubricant and friction material failures were independently studied, and durability tests were conducted to evaluate component failures.
X