Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Intake Valve Deposit Cleanup Testing as a Combustion Chamber Deposit Discriminator

1998-10-19
982714
Carefully controlled intake valve deposit (IVD) cleanup testing is found to be an effective method for differentiating the effect of the deposit control additives on combustion chamber deposits (CCD). The IVD buildup procedure produces a consistent initial level of CCD that the cleanup additive, the additive of interest, continues to build on until the end of the cleanup test. This “end of cleanup” CCD is found to be as repeatable and differentiable a measurement as tests run under the more common “keep clean” type operation. While IVD cleanup testing induces a mid-test disturbance in the form of the end of buildup measurement, it aligns well with two key CCD protocols in terms of the higher additive treat rates used and the extended total test length. In an analysis of results from IVD cleanup tests run using four different engine/vehicle procedures on seven different additives, several findings stood out.
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

The KA24E Engine Test for ILSAC GF-3.Part 2. Valve Train Wear Response to Formulation Variables

1998-10-19
982626
The work presented here is the second of two papers investigating the KA24E engine test. The first paper characterized the KA24E engine in terms of the physical and chemical operating environment it presents to lubricants. The authors investigated oil degradation and wear mechanisms, and examined the differences between the KA24E and the Sequence VE engine tests. It was shown that while the KA24E does not degrade the lubricant to the extent that occurs in the Sequence VE, wear could be a serious problem if oils are poorly formulated. This second paper examines the wear response of the KA24E to formulation variables. A statistically designed matrix demonstrated that the KA24E is sensitive to levels of secondary zinc dialkyldithiophosphate (ZDP), dispersant and calcium sulfonate detergent. This matrix also showed that the KA24E appears to have good repeatability for well formulated oils and is a reasonable replacement for the wear component of the Sequence VE.
Technical Paper

The KA24E Engine Test for ILSAC GF-3 Part 1: Engine Design, Operating Conditions and Wear Mechanisms

1998-10-19
982625
The Nissan KA24E engine test is designated to replace the Ford Sequence VE engine test as the low temperature valve train wear requirement for ILSAC (International Lubricant Standardization and Approval Committee) GF-3. The KA24E (recently designated the Sequence IV A) represents much of the current world-wide material and design technology while retaining the sliding cam/follower contact found in earlier engine designs. The work presented here is the first of two reports. In this first report, the physical and chemical environment the KA24E engine presents a lubricant is characterized and compared to those of the Sequence VE engine. Valve train materials and wear modes are investigated and described. Although chemical analysis of drain oils indicate the KA24E procedure does not degrade the lubricant to the extent seen in the Sequence VE test, valve train wear appears to proceed in a similar manner in both tests.
Technical Paper

The Impact of Passenger Car Motor Oils on Emissions Performance

2003-05-19
2003-01-1988
Throughout the evolution of the automobile, passenger car motor oils have been developed to address issues of wear, corrosion, deposit formation, friction, and viscosity stability. As a result, the internal combustion engines are now developed with the expectation that the lubricants to be used in them will deliver certain performance attributes. Metallurgies, clearances, and built-in stresses are all chosen with certain expectations from the lubricant. A family of chemicals that has been universally used in formulating passenger car motor oils is zinc dithiophosphates (ZDPs). ZDPs are extremely effective at protecting highly stressed valve train components against wear failure, especially in engine designs with a sliding contact between cams and followers. While ZDPs' benefits on wear control are universally accepted, ZDPs have been identified as the source of phosphorus, which deactivates noble metal aftertreatment systems.
Technical Paper

Supporting the Transportation Industry: Creating the GC-LB and High-Performance Multiuse (HPM) Grease Certification Programs

2023-10-31
2023-01-1652
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications.
Technical Paper

Reducing Deposits in a DISI Engine

2002-10-21
2002-01-2660
Direct injection spark ignition (DISI) engine technology offers tremendous potential advantages in fuel savings and is likely to command a progressively increasing share of the European passenger vehicle market in the future. A concern is its propensity to form deposits on the inlet valve. In extreme cases, these deposits can lead to poor drivability and deteriorating emission performance. This inlet valve deposit build up is a well-known phenomenon in DISI engines since even additised fuel cannot wash over the back of intake valves to keep them clean. Two lubricants and two fuels were tested in a four car matrix. One of the lubricants was a fluid specifically developed by Lubrizol for DISI technology; the other was a baseline oil meeting Ford lubricants requirements and was qualified to ACEA A1/B1/ ILSAC GF2 performance level. Similarly, a baseline fuel was tested against an additised system.
Technical Paper

Polymer Additives as Mist Suppressants in Metalworking Fluids Part IIa: Preliminary Laboratory and Plant Studies - Water Soluble Fluids

1998-02-23
980097
Mist generated from water-soluble fluids used in machining operations represents a potentially significant contribution to worker exposure to airborne particles. Part I of this study [1], discussed polymer additives as mist suppressants for straight mineral oil metalworking fluids (MWF), which have been successfully employed at several locations. This paper focuses on recent developments in polymer mist suppressants for water-based MWF, particularly in the production environment. The polymer developed and tested in this study functions on a similar basis to that for straight oil anti-mist additives. This water soluble polymer suppresses the formation of small mist droplets and results in a distribution of larger droplet sizes. These larger droplets tend to settle out near the point of machining, resulting in a significant decrease in the total airborne mist concentration.
Journal Article

Optimizing Engine Oils for Fuel Economy with Advanced Test Methods

2017-10-08
2017-01-2348
Increasingly stringent fuel economy and emissions regulations around the world have forced the further optimization of nearly all vehicle systems. Many technologies exist to improve fuel economy; however, only a smaller sub-set are commercially feasible due to the cost of implementation. One system that can provide a small but significant improvement in fuel economy is the lubrication system of an internal combustion engine. Benefits in fuel economy may be realized by the reduction of engine oil viscosity and the addition of friction modifying additives. In both cases, advanced engine oils allow for a reduction of engine friction. Because of differences in engine design and architecture, some engines respond more to changes in oil viscosity or friction modification than others. For example, an engine that is designed for an SAE 0W-16 oil may experience an increase in fuel economy if an SAE 0W-8 is used.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Technical Paper

Next Generation Torque Control Fluid Technology, Part III: Using an Improved Break-Away Friction Screen Test to Investigate Fundamental Friction Material-Lubricant Interactions

2010-10-25
2010-01-2231
Wet clutch friction devices are the primary means by which torque is transmitted in many of today's modern vehicle drivelines. These devices are used in automatic transmissions, torque vectoring devices, active on-demand vehicle stability systems, and torque biasing differentials. As discussed in a previous SAE paper ( 2006-01-3270 - Next Generation Torque Control Fluid Technology, Part I: Break-Away Friction Slip Screen Test Development), a testing tool was developed to simulate a limited slip differential break-away event using a Full Scale-Low Velocity Friction Apparatus (FS-LVFA). The purpose of this test was to investigate the fundamental interactions between lubricants and friction materials. The original break-away friction screen test, which used actual vehicle clutch plates and a single friction surface, proved a useful tool in screening new friction modifier technology.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

2003-05-19
2003-01-1963
The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
Journal Article

Impact of Lubricating Oil Condition on Exhaust Particulate Matter Emissions from Light Duty Vehicles

2010-05-05
2010-01-1560
Limited technical studies to speciate particulate matter (PM) emissions from gasoline fueled vehicles have indicated that the lubricating oil may play an important role. It is unclear, however, how this contribution changes with the condition of the lubricant over time. In this study, we hypothesize that the mileage accumulated on the lubricant will affect PM emissions, with a goal of identifying the point of lubricant mileage at which PM emissions are minimized or at least stabilized relative to fresh lubricant. This program tested two low-mileage Tier 2 gasoline vehicles at multiple lubricant mileage intervals ranging from zero to 5000 miles. The LA92 cycle was used for emissions testing. Non-oxygenated certification fuel and splash blended 10% and 20% ethanol blends were used as test fuels.
Technical Paper

Identifying the limitations of the Hot Tube test as a predictor of lubricant performance in small engine applications

2020-01-24
2019-32-0510
The Hot Tube Test is a bench test commonly used by OEMs, Oil Marketers and Lubricant Additive manufacturers within the Small Engines industry. The test uses a glass tube heated in an aluminum block to gauge the degree of lacquer formation when a lubricant is subjected to high temperatures. This test was first published by engineers at Komatsu Ltd. (hence KHT) in 1984 to predict lubricant effects on diesel engine scuffing in response to a field issue where bulldozers were suffering from piston scuffing failures [1]. Nearly 35 years after its development the KHT is still widely used to screen lubricant performance in motorcycle, power tool and recreational marine applications as a predictor of high-temperature piston cleanliness - a far cry from the original intended performance predictor of the test. In this paper we set out to highlight the shortcomings of the KHT as well as to identify areas where it may still be a useful screening tool as it pertains to motorcycle applications.
Technical Paper

Extending Injector Life in Methanol-Fueled DDC Engines Through Engine Oil and Fuel Additives

1990-10-01
902227
Considerable development effort has shown that conventional diesel engine lubricating oil specifications do not define the needs for acceptable injector life in methanol-fueled, two-stroke cycle diesel engines. A cooperative program was undertaken to formulate an engine oil-fuel additive system which was aimed at improving performance with methanol fueling. The performance feature of greatest concern was injector tip plugging. A Taguchi matrix using a 100 hour engine test was designed around an engine oil formulation which had performed well in a 500 hour engine test using a simulated urban bus cycle. Parameters investigated included: detergent level and type, dispersant choice, and zinc dithiophosphate level. In addition, the influence of a supplemental fuel additive was assessed. Analysis of the Taguchi Matrix data shows the fuel additive to have the most dramatic beneficial influence on maintaining injector performance.
Technical Paper

Evaluating the Impact of Oil Viscoelasticity on Bearing Friction

2023-10-31
2023-01-1648
In this work, a novel bearing test rig was used to evaluate the impact of oil viscoelasticity on friction torque and oil film thickness in a hydrodynamic journal bearing. The test rig used an electric motor to rotate a test journal, while a hydraulic actuator applied radial load to the connecting rod bearing. Lubrication of the journal bearing was accomplished via a series of axial and radial drillings in the test shaft and journal, replicating oil delivery in a conventional engine crankshaft. Journal bearing inserts from a commercial, medium duty diesel engine (Cummins ISB) were used. Oil film thickness was measured using high precision eddy current sensors. Oil film thickness measurements were taken at two locations, allowing for calculation of minimum oil film thickness. A high-precision, in-line torque meter was used to measure friction torque. Four test oils were prepared and evaluated.
Technical Paper

Enhancement of the Sequence IIIG by the Study of Oil Consumption

2004-06-08
2004-01-1893
The Sequence IIIG is a newly developed 100 hour test used to evaluate the performance of crankcase engine oils in the areas of high temperature viscosity increase, wear, deposits, pumpability, and ring sticking for the North American GF-4 standard. Data from the ASTM Precision Matrix, completed in the spring of 2003, along with early reference data from the Lubricant Test Monitoring System (LTMS) showed unexpected test results for selected oils and indicated that percent viscosity increase and pumpability were highly correlated with oil consumption. This correlation led to an intensive study of the factors that influence oil consumption and an attempt to compensate for non-oil related oil consumption through a model based adjustment of the results. The study and scrutiny of the IIIG data has led to more uniform oil consumption in the test and improved test precision, and has eliminated the need for a correction equation based on non-oil related oil consumption.
Journal Article

Engine Oil Fuel Economy Testing - A Tale of Two Tests

2017-03-28
2017-01-0882
Fuel economy is not an absolute attribute, but is highly dependent on the method used to evaluate it. In this work, two test methods are used to evaluate the differences in fuel economy brought about by changes in engine oil viscosity grade and additive chemistry. The two test methods include a chassis dynamometer vehicle test and an engine dynamometer test. The vehicle testing was conducted using the Federal Test Procedure (FTP) testing protocol while the engine dynamometer test uses the proposed American Society for Testing and Materials (ASTM) Sequence VIE fuel economy improvement 1 (FEI1) testing methodology. In an effort to improve agreement between the two testing methods, the same model engine was used in both test methods, the General Motors (GM) 3.6 L V6 (used in the 2012 model year Chevrolet™ Malibu™ engine). Within the lubricant industry, this choice of engine is reinforced because it has been selected for use in the proposed Sequence VIE fuel economy test.
X