Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

The Effect of Heavy Loads on Light Duty Vehicle Axle Operating Temperature

2005-10-24
2005-01-3893
With the continued growth of the sport utility vehicle (SUV) market in North America in recent years more emphasis has been placed on fluid performance in these vehicles. In addition to fuel economy the key performance area sought by original equipment manufacturers (OEMs) in general has been temperature reduction in the axle. This is being driven by warranty claims that show that one of the causes of axle failure in these type vehicles is related to overheating. The overheating is, in turn, caused by high load situations, e.g., pulling a large trailer at or near the maximum rated load limit for the vehicle, especially when the vehicle or its main subcomponents are relatively new. The excessive temperature generally leads to premature failure of seals, bearings and gears. The choice of lubricant can have a significant effect on the peak and stabilized operating temperature under these extreme conditions.
Technical Paper

Over a Decade of LTMS

2004-06-08
2004-01-1891
The Lubricant Test Monitoring System (LTMS) is the calibration system methodology and protocol for North American engine oil and gear oil tests. This system, administered by the American Society for Testing Materials (ASTM) Test Monitoring Center (TMC) since 1992, has grown in scope from five gasoline engine tests to over two dozen gasoline, heavy duty diesel and gear oil tests ranging from several thousand dollars per test to almost one-hundred thousand dollars per test. LTMS utilizes Shewhart and Exponentially Weighted Moving Average (EWMA) control charts of reference oil data to assist in the decision making process on the calibration status of test stands and test laboratories. Equipment calibration is the backbone step necessary in the unbiased evaluation of candidate oils for oil quality specifications.
Journal Article

Impact of Viscosity Modifiers on Gear Oil Efficiency and Durability: Part II

2013-04-08
2013-01-0299
This paper outlines the second part in a series on the effect of polymeric additives commonly known as viscosity modifiers (VM) or viscosity index improvers (VII) on gear oil efficiency and durability. The main role of the VM is to improve cold temperature lubrication and reduce the rate of viscosity reduction as the gear oil warms to operating temperature. However, in addition to improved operating efficiency across a broad temperature range compared to monograde fluids the VM can impart a number of other significant rheological improvements to the fluid [1]. This paper expands on the first paper in the series [2], covering further aspects in fluid efficiency, the effect of VM chemistry on these and their relationship to differences in hypoid and spur gear rig efficiency testing. Numerous VM chemistry types are available and the VM chemistry and shear stability is key to fluid efficiency and durability.
Technical Paper

Field Experience with Selected Lubricants for Commercial Vehicle Manual Transmissions

2005-05-11
2005-01-2176
Laboratory testing is an essential part of product development. However, it usually only reflects a small portion of the experience that a lubricant may see in actual service conditions. Many laboratory tests are designed to only address one or two facets of what is deemed to be critical performance areas. Since it is difficult to cover all of the critical performance conditions problems sometimes arise in service that were not anticipated by the laboratory test. Or, conversely, some above average performance evolves during service that was not observed in a specific laboratory test. This paper highlights the overall performance of four manual transmission fluids approved or accepted by the manufacturer for this application. The evaluations were conducted in a city bus fleet with the test buses assigned to the same route for approximately 300,000 km over 30 months.
Technical Paper

Developing Next Generation Axle Fluids: Part I - Test Methodology to Measure Durability and Temperature Reduction Properties of Axle Gear Oils

2002-05-06
2002-01-1691
Light trucks and sport utility vehicles (SUVs) have become extremely popular in the United States in recent years, but this shift to larger passenger vehicles has placed new demands upon the gear lubricant. The key challenge facing vehicle manufacturers in North America is meeting government-mandated fuel economy requirements while maintaining durability. Gear oils must provide long-term durability and operating temperature control in order to increase equipment life under severe conditions while maintaining fuel efficiency. This paper describes the development of a full-scale light duty axle test that simulates a variety of different driving conditions that can be used to measure temperature reduction properties of gear oil formulations. The work presented here outlines a test methodology that allows gear oil formulations to be compared with each other while accounting for axle changes due to wear and conditioning during testing.
Technical Paper

Developing Next Generation Axle Fluids – Part II - Systematic Formulating Approach

2002-05-06
2002-01-1692
Light trucks and sport utility vehicles (SUVs) have become extremely popular in the United States in recent years, but this shift to larger passenger vehicles has placed new demands upon the gear lubricant. The key challenge facing vehicle manufacturers in North America is meeting government-mandated fuel economy requirements while maintaining the durability required for severe service. In light truck/SUV applications, gear oils must provide operating temperature control under extreme conditions such as trailer-towing. Higher operating temperatures for prolonged periods can adversely affect metallurgical properties and reduce fluid film thickness, both of which can lead to premature equipment failures. In our view, operating temperature is an important indicator of durability. Unfortunately, lubricants optimized for temperature control do not always provide the best fuel economy.
Technical Paper

Balancing Extended Oil Drain With Extended Equipment Life

1996-05-01
961110
All automotive gear oils must satisfy a series of standard industry or Original Equipment Manufacturer (OEM) tests. These usually include bench, axle dynamometer, and field tests. However, product development testing must extend beyond satisfying standard test protocols. This is especially true as increased emphasis is placed on extending oil drain intervals and increasing equipment life in the face of greater performance demands through new heavy-duty vehicle designs. End-users ultimately benefit from extended oil drain intervals and increased equipment life. However, the effort to achieve both initiatives will prove successful only through careful development and selection of the proper performance additives and base fluids. Also, a broad focus must be maintained to satisfy all lubricant requirements. These requirements build on a solid base of standard features and include new features that stretch the current envelope of gear oil performance.
X