Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Fuel Composition and Molecular Structure Effects on Soot Formation in Direct-Injection Flames Under Diesel Engine Conditions

2005-04-11
2005-01-0381
Numerous investigations have been conducted to determine the effect of fuel composition and molecular structure on particulate emissions using exhaust gas analysis, but relatively few measurements have been obtained in-cylinder or under conditions where fuel effects can be isolated from other variables. Recent work has shown that the amount of air entrained upstream of the lift-off length is critical to soot formation and therefore must be controlled when making relative comparisons of soot formed from various fuels. In this work, dimethoxymethane was used as the base fuel to produce a non-sooting flame with relatively constant lift-off length in a constant volume combustion vessel at 1000 K, and a density of 16.6 kg/m3. A second fuel was then mixed into the dimethoxymethane (DMM) to determine a point at which soot formation begins.
Technical Paper

Calibration of an RGB, CCD Camera and Interpretation of its Two-Color Images for KL and Temperature

2005-04-11
2005-01-0648
The two-color method for measuring temperature and optical thickness of soot (KL) has become a standard diagnostic tool for the evaluation of engine designs and technologies relative to soot formation and flame temperature. Implementation of the two-color technique typically requires two cameras or a set of half-pass mirrors and optical narrow band-pass filters. In this paper, a technique for collecting and interpreting two-color images with a single calibrated camera without image splitting and filtering hardware is demonstrated and discussed. This method uses a relatively inexpensive commercial, 10-bit, RGB color, CCD camera capable of 16 μs exposure times. The CCD has published spectral response curves in the visible range, but a method for obtaining the spectral response for the optical system using a monochromator is discussed.
Technical Paper

An Empirical, Mixing-Limited, Zero-Dimensional Model for Diesel Combustion

2004-03-08
2004-01-0924
A zero-dimensional model is introduced that combines recently presented empirical relationships for diesel jet penetration and flame lift-off length in order to produce a realistic heat release rate and predict the temperature and equilibrium species concentrations in five zones within the combustion chamber. The new model describes the compression, combustion and expansion portions of a diesel cycle. During fuel injection and combustion, the temperature, geometry, and composition of five zones are calculated: 1) vaporizing fuel and air, 2) vaporized reactants, 3) premixed products, 4) adiabatic flame sheath, and 5) surrounding charge gas. The apparent heat release rate predicted by the model is compared with data from a constant volume combustion vessel (CVCV) and two single-cylinder direct-injection diesel engines. The rate of charge air entrainment is determined from the correlation of a non-vaporizing, non-reacting jet with no wall impingement.
X