Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Using Cloud Point Depressants Opportunistically To Reduce No.2 Diesel Fuel Cloud Point Giveaway

2001-05-07
2001-01-1927
Diesel fuel is a blend of various middle distillate components separated at the refinery. The composition and characteristics of the diesel fuel blend changes daily if not hourly because of normal process variation, changing refinery processing conditions, changing crude oil diet or changing diesel fuel and kerosene market conditions. Regardless of the situation going on at the refinery or the market, the resultant diesel fuel must consistently meet established cloud point specifications. To consistently meet the cloud point specifications, refiners are forced to blend their diesel fuels in such a way that the resultant blend is always on the low side of the cloud point specification even when the refining process adversely changes the fuel characteristics. This practice has the effect of producing several degrees of cloud point “giveaway” when the refinery is not experiencing adverse swings in product quality.
Technical Paper

Use of Virtual Tests in Establishing BOI/VGRA

2002-10-21
2002-01-2675
The Engine Oil Industry Base Oil Interchange (BOI) and Viscosity Grade Read Across (VGRA) guidelines developed by the American Petroleum Institute (API) provide a means to significantly reduce the time to market for current technology oils. The guidelines also allow conversion of a fraction of the millions of dollars spent each year on engine testing in pursuit of API engine oil licensing into research testing and the development of fundamental knowledge. In the past, guidelines have been developed based upon a general assessment of minimal engine test data. Recently, however, regression models have been used to assess Base Oil and Viscosity Grade effects. The use of statistical regression models and Virtual Tests in determining effects to establish BOI and VGRA has several advantages. These advantages, demonstrated through an example and a case study, include volume of data and breadth of data.
Technical Paper

The Impact of Lubricant and Fuel Derived Sulfur Species on Efficiency and Durability of Diesel NOx Adsorbers

2004-10-25
2004-01-3011
Global emission legislations for diesel engines are becoming increasingly stringent. While the exhaust gas composition requirements for prior iterations of emission legislation could be met with improvements in the engine's combustion process, the next issue of European, North American and Japanese emission limits greater than 2005 will require more rigorous measures, mainly employment of exhaust gas aftertreatment systems. As a result, many American diesel OEMs are considering NOx adsorbers as a means to achieve 2007+ emission standards. Since the efficacy of a NOx adsorber over its lifetime is significantly affected by sulfur (“sulfur poisoning”), forthcoming reductions in diesel fuel sulfur (down to 15 ppm), have raised industry concerns regarding compatibility and possible poisoning effects of sulfur from the lubricant.
Technical Paper

Study of Diesel and Ethanol Blends Stability

2003-10-27
2003-01-3191
Characteristics of E diesel, a fuel blend of diesel fuel and ethanol, are considered in a matrix of tests. One characteristic of particular concern and a subject of this investigation is that of stability. Methods to evaluate stability are looked at and compared in light of the potential for distillate and ethanol to separate under certain conditions. The quality of the fuel blend is enhanced by the use of enabling additives to ensure stability which necessitates development of a standard for assessment of the quality of stability. The properties of various base diesel fuels and their influence on stability are also studied. Other key characteristics are evaluated including viscosity, pour point, and oxidative stability.
Technical Paper

Review of Exhaust Emissions of Compression Ignition Engines Operating on E Diesel Fuel Blends

2003-10-27
2003-01-3283
Recently, research and testing of oxygenated diesel fuels has increased, particularly in the area of exhaust emissions. Included among the oxygenated diesel fuels are blends of diesel fuel with ethanol, or E diesel fuels. Exhaust emissions testing of E diesel fuel has been conducted by a variety of test laboratories under various conditions of engine type and operating conditions. This work reviews the existing public data from previous exhaust emissions testing on E diesel fuel and includes new testing performed in engines of varied design. Emissions data compares E diesel fuel with normal diesel fuel under conditions of different engine speeds, different engine loads and different engine designs. Variations in performance under these various conditions are observed and discussed with some potential explanations suggested.
Technical Paper

Representation of Constrained/Unconstrained Layer Damping Treatments in FEA/SEA Vehicle System Models: A Simplified Approach

1999-05-17
1999-01-1680
In this study, a simplified approach to modeling the dynamics of damping treatments in FEA (Finite Element)/ SEA (Statistical Energy) models is presented. The basic idea is to represent multi-layered composite structures with an equivalent layer. The properties of the equivalent layer are obtained by using the RKU (Ross, Kerwin and Ungar) method. The procedure presented here does not require any special pre-processing of the finite element input file and it does not increase the number of active degrees of freedom in the model, thereby making it possible to include the effect of these treatments in large system/subsystem level models. The equivalent properties obtained from RKU analysis can also be used in the SEA system models. In this study, both unconstrained and constrained layer damping treatments applied to simple structures (e.g., flat panels) as well as production vehicle components are examined.
Technical Paper

Repairable System Reliability Prediction

2004-03-08
2004-01-0457
For a vehicle or repairable system, incidents (conditions) are neither necessarily independent nor identically distributed. Therefore, traditional statistical distributions like Weibull, Normal, etc, are no longer valid to estimate reliability. The Non-homogeneous Poisson process (NHPP) model can be used to predict reliability and warranty of the field product. It can also measure the reliability improvement during the development cycle. The NHPP model is discussed in this paper. In applying a NHHP model to reliability data on a repairable system, one may have few or no failures. This paper presents the I/100 and reliability derivations when the parameter β in the ROCOF function is assumed to have a known value.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Technical Paper

Lubricity and Injector Pump Wear Issues with E diesel Fuel Blends

2002-10-21
2002-01-2849
The search for alternative energy sources, particularly renewable sources, has led to increased activity in the area of ethanol blended diesel fuel, or E diesel. E diesel offers potential benefits in reducing greenhouse gases, reducing dependence on crude oil and reducing engine out emissions of particulate matter. However, there are some concerns about the use of E diesel in the existing vehicle fleet. One of the chief concerns of the use of E diesel is the affect of the ethanol on the lubricating properties of the fuel and the potential for fuel system wear. Additive packages that are used to formulate E diesel fuels can improve fuel lubricity and prevent abnormal fuel system wear. This work studies the lubricity properties of several E diesel blends and the diesel fuels that are used to form them. In addition to a variety of bench scale lubricity tests, injector pump tests were performed as an indicator of long term durability in the field.
Technical Paper

Information Flow Analysis for Air Bag Sensor Development

2000-03-06
2000-01-1388
A statistical theory is used to quantify the amount of information transmitted from a transducer (i.e., accelerometer) to the air bag controller during a vehicle crash. The amount of information relevant to the assessment of the crash severity is evaluated. This quantification procedure helps determine the effectiveness of different testing conditions for the calibration of sensor algorithms. The amount of information in an acceleration signal is interpreted as a measure of the ability to separate signals based on parameters that are used to assess the severity of an impact. Applications to a linear spring-mass model and to actual crash signals from a development vehicle are presented. In particular, the comparison of rigid barrier (RB) and offset deformable barrier (ODB) testing modes is analyzed. Also, the performance of front-mounted and passenger compartment accelerometers are compared.
Technical Paper

Enhancement of the Sequence IIIG by the Study of Oil Consumption

2004-06-08
2004-01-1893
The Sequence IIIG is a newly developed 100 hour test used to evaluate the performance of crankcase engine oils in the areas of high temperature viscosity increase, wear, deposits, pumpability, and ring sticking for the North American GF-4 standard. Data from the ASTM Precision Matrix, completed in the spring of 2003, along with early reference data from the Lubricant Test Monitoring System (LTMS) showed unexpected test results for selected oils and indicated that percent viscosity increase and pumpability were highly correlated with oil consumption. This correlation led to an intensive study of the factors that influence oil consumption and an attempt to compensate for non-oil related oil consumption through a model based adjustment of the results. The study and scrutiny of the IIIG data has led to more uniform oil consumption in the test and improved test precision, and has eliminated the need for a correction equation based on non-oil related oil consumption.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

Effects of PuriNOx™ Water-Diesel Fuel Emulsions on Emissions and Fuel Economy in a Heavy-Duty Diesel Engine

2002-10-21
2002-01-2891
The engine-out emissions and fuel consumption rates for a modern, heavy-duty diesel engine were compared when fueling with a conventional diesel fuel and three water-blend-fuel emulsions. Four different fuels were studied: (1) a conventional diesel fuel, (2) PuriNOx,™ a water-fuel emulsion using the same conventional diesel fuel, but having 20% water by mass, and (3,4) two other formulations of the PuriNOx™ fuel that contained proprietary chemical additives intended to improve combustion efficiency and emissions characteristics. The emissions data were acquired with three different injection-timing strategies using the AVL 8-Mode steady-state test method in a Caterpillar 3176 engine, which had a calibration that met the 1998 nitrogen oxides (NOX) emissions standard.
Technical Paper

Developing a Precision and Severity Monitoring System for CEC Performance Tests

2004-06-08
2004-01-1892
The Coordinating European Council, CEC, develops performance tests for the motor, oil, petroleum, additive and allied industries. In recent years, CEC has moved away from using round robin programmes (RRP's) for monitoring the precision and severity of test methods in favour of regular referencing within a test monitoring system (TMS). In a TMS, a reference sample of known performance, determined by cross-laboratory testing, is tested at regular intervals at each laboratory. The results are plotted on control charts and determine whether the installation is and continues to be fit to evaluate products. Results from all laboratories are collated and combined to monitor the general health of the test. The TMS approach offers considerable benefits in terms of detecting test problems and improving test quality. However, the effort required in collating data for statistical analysis is much greater, and there are technical difficulties in determining precision from TMS data.
Technical Paper

Counteracting detrimental EGR effects with diesel fuel additive

2003-05-19
2003-01-1915
A new generation of fluid technology using novel diesel fuel detergent/dispersant chemistry provides a multitude of beneficial effects to the diesel engine, especially the latest model designs. In addition to improved injector, valve and combustion chamber deposit removal, the additive restores power, fuel economy, performance and emission levels1. Positive observations have also been documented along with improved performance concerning crankcase lube viscosity, soot loading and TBN retention. An even greater added benefit is the inherent capability of the fuel additive to deal with several EGR issues now prominent with the introduction of new engines. Recent research, reported herein, has uncovered the extensive efficacy of this chemistry for piston durability and neutralization of ring corrosion phenomena. All of the beneficial additive attributes are further enhanced with increased oxidative and thermal fuel stability and no loss of filterability.
Technical Paper

Combustion Modeling of Soot Reduction in Diesel and Alternate Fuels using CHEMKIN®

2001-03-05
2001-01-1239
A new gas phase kinetic model using Westbrook's gas phase n-heptane model and Frenklach's soot model was constructed. This model was then used to predict the impact on PAH formation as an indices of soot formation on ethanol/diesel fuel blends. The results were then compared to soot levels measured by various researchers. The ignition delay characteristics of ethanol were validated against experimental results in the literature. In this paper the results of the model and the comparison with experimental results will be discussed along with implications on the method of incorporation of additives and alternative fuels.
Technical Paper

Cloud Point Depressants and their Effect on Diesel Fuel Properties

1998-10-19
982575
Many marketers of branded diesel fuels are introducing a “premium” diesel fuel grade. The National Conference on Weights and Measures is recommending that one of the criteria for marketing a fuel as “premium” is that it have a lower cloud point or alternatively a reduced low temperature flow test (LTFT) failure point [1]. However, waxy crudes and process limitations make it difficult for refiners to economically make very low cloud point diesel fuel. Fortunately, cloud point depressants (CPDs) can overcome these limitations. However, refiners are concerned about the effect cloud point additives have on other diesel fuel properties. We found that cloud point depressants allow refiners to meet low temperature specifications while being neutral or beneficial to other diesel fuel properties.
Technical Paper

Cloud Point Depressant Response Effects in Ultra-Low-Sulfur Diesel Fuel

2005-10-24
2005-01-3898
Cloud point depressants (CPD) have been successfully used for many years in low-sulfur diesel fuels. For over ten years, custom-designed, specialty polymer chemistry has enabled refiners to meet cloud point (CP) guidelines with substantially less kerosene. This translates into greater refined yields through cut-point adjustment upgrades and the potential for diverting kerosene to more lucrative market opportunities, such as jet fuel. The practice of cut-point downgrades to gas oil can be costly because diesel fuel generally has greater value. Kerosene dilutions have historically been as high as 30%-40% by volume with low-sulfur diesel fuels [1, 2]. While kerosene addition enables fuels to reach CP guidelines, it may negatively impact the fuel's energy content, cetane number, lubricity, flash point and density. Properly designed CP additives are able to substantially reduce or even eliminate the need for kerosene, thus substantially reducing refinery costs.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

A Statistical Review of Available Data Correlating the BMW and Ford Intake Valve Deposit Tests

1998-05-04
981365
A 100-hour engine dynamometer test for intake valve deposits (IVD) which uses a Ford 2.3L engine was developed by the Coordinating Research Council (CRC). Recently, this test has been approved by the American Society for Testing and Materials (ASTM) as Test Method D 6201-97. Since this test offers improvements in test variability, duration, and cost, it is expected to replace ASTM D 5500-94, a 16,000-km vehicle test run using a BMW 318i, as the key performance test for the Certification of Gasoline Deposit Control Additives by the EPA Final Rule. As a step in the replacement process, a correlation between valve deposit levels for the CRC 2.3L Ford IVD test and ASTM D 5500 BMW IVD test must be determined. This paper provides a statistical review of available data in an attempt to provide such a correlation.
X