Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Validating Target Compounds to Vehicle Interior Odor Complaints by Reconstituting Their Concentrations in Vehicles

2017-03-28
2017-01-0324
Ford China had carried out a research project to validate the target compounds that lead to Chinese customers’ complaint about interior cabin odor. The aim of the study was to understand the sensitivity of the customers, using experimental design and determine which substances that are key contributors to customer odor concerns. In this research, acetaldehyde, toluene, xylene, ethylbenzene, acetone and butyraldehyde are used to conduct odor re-manufacture study through reconstituting their concentration in vehicles, it is concluded that compound classes aromatics, aldehydes, and ketones have direct relationship to the odor concerns in China.
Journal Article

Ultra-Trace Real Time VOC Measurements by SIFT-MS for VIAQ

2017-03-28
2017-01-0989
Vehicle interior air quality (VIAQ) measurements are currently conducted using the offline techniques GC/MS and HPLC. To improve throughput, speed of analysis, and enable online measurement, specialized instruments are being developed. These instruments promise to reduce testing cost and provide shortened analysis times at comparable accuracy to the current state of the art offline instruments and methods. This work compares GCMS/HPLC to the Voice200ultra, a specialized real-time instrument utilizing the technique selected ion flow tube mass spectrometry (SIFT-MS). The Voice200ultra is a real-time mass spectrometer that measures volatile organic compounds (VOCs) in air down to the parts-per-trillion level by volume (pptv). It provides instantaneous, quantifiable results with high selectivity and sensitivity using soft chemical ionization.
Technical Paper

LNT+SCR Catalyst Systems Optimized for NOx Conversion on Diesel Applications

2011-04-12
2011-01-0305
A laboratory study was performed to assess the effectiveness of LNT+SCR systems for NOx control in lean exhaust. The effects of the catalyst system length and the spatial configuration of the LNT & SCR catalysts were evaluated for their effects on the NOx conversion, NH₃ yield, N₂O yield, and HC conversion. It was found that multi-zone catalyst architectures with four or eight alternating LNT and SCR catalyst zones had equivalent gross NOx conversion, lower NH₃ and N₂O yield, and significantly higher net conversion of NOx to N₂ than an all-LNT design or a standard LNT+SCR configuration, where all of the SCR volume is placed downstream of the LNT. The lower NH₃ emissions of the two multi-zone designs relative to the standard LNT+SCR design were attributed to the improved balance of NOx and NH₃ in the SCR zones.
X