Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibro-Acoustic Behavior of Bead-Stiffened Flat Panels: FEA, SEA, and Experimental Analysis

1999-05-17
1999-01-1698
Vibration and sound radiation characteristics of bead-stiffened panels are investigated. Rectangular panels with different bead configurations are considered. The attention is focused on various design parameters, such as orientation, depth, and periodicity, and their effects on equivalent bending stiffness, modal density, radiation efficiency and sound transmission. A combined FEA-SEA approach is used to determine the response characteristics of panels across a broad frequency range. The details of the beads are represented in fine-meshed FEA models. Based on predicted surface velocities, Rayleigh integral is evaluated numerically to calculate the sound pressure, sound power and then the radiation efficiency of beaded panels. Analytical results are confirmed by comparing them with experimental measurements. In the experiments, the modal densities of the panels are inferred from averaged mechanical conductance.
Technical Paper

Vehicle Cradle Durability Design Development

2005-04-11
2005-01-1003
In this paper, cradle design functional objectives are briefly reviewed and a durability development process is proposed focusing on the cradle loads, stress, strain, and fatigue life analysis. Based upon the proposed design process, sample isolated and non-isolated cradle finite element (FE) models for a uni-body sport utility vehicle (SUV) under different design phases are solved and correlated with laboratory bench and proving ground tests. The correlation results show that the applied cradle models can be used to accurately predict the critical stress spots and fatigue life under various loading conditions.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

USCAR Traction Test Methodology for Traction-CVT Fluids

2002-10-21
2002-01-2820
A traction test machine, developed for evaluation of traction-CVT fluids for the automotive consortium, USCAR, provides precision traction measurements to stresses up to 4 GPa. The high stress machine, WAMhs, provides an elliptical contact between AISI 52100 steel roller and disc specimens. Machine stiffness and positioning technology offer precision control of linear slip, sideslip and spin. A USCAR traction test methodology includes entrainment velocities from 2 to 10 m/sec and temperatures from -20°C to 140°C. The purpose of the USCAR machine and test methodology is to encourage traction fluid development and to establish a common testing approach for fluid qualification. The machine utilizes custom software, which provides flexibility to conduct comprehensive traction fluid evaluations.
Technical Paper

ULSAB-Advanced Vehicle Concepts: Safety/Crash Management

2002-03-04
2002-01-0638
The goal of ULSAB-Advanced Vehicle Concepts (AVC) is to develop a platform with the highest number of shared parts possible between two vehicle classes -European C-Class and the North American PNGV-Class concepts. Aggressive targets for mass and safety are considered --all the while maintaining affordable cost and achieving safety goals anticipated for 2004 and beyond. The objective of the CAE analysis of crashworthiness for ULSAB-AVC is to analyze and optimize the vehicle structure to provide the opportunity for development of complete vehicles that will obtain excellent star ratings. This paper will discuss crash safety and crash energy management aspects of the ULSAB-AVC, including important considerations for selecting advanced high-strength steels for crashworthiness applications, body-in-white design and materials selection procedures, BIW concept design and major load paths, and performance against crashworthiness targets.
Technical Paper

Truck Body Mount Load Prediction from Wheel Force Transducer Measurements

2005-04-11
2005-01-1404
This paper introduces a reliable method to calculate body mount loads from wheel-force-transducer (WFT) measurements on framed vehicles. The method would significantly reduce time and cost in vehicle development process. The prediction method includes two parts: Hybrid Load Analysis (HLA) that has been used by DaimlerChrysler Corporation and Body Mount Load Analysis (BMLA) that is introduced by this paper for the first time. The method is validated on a body-on-frame SUV and a pickup truck through one proving ground events. The example shown in this paper is for a SUV and one of the most severe events. In HLA, the loads at suspension-to-frame attachments are calculated from spindle loads measured by WFT. In BMLA, body mount loads were calculated using outputs of HLA with detailed finite-element-modeled frame and body. The loads are compared with measured body mount loads. The comparisons are conducted in range, standard deviation (S.D.), and fatigue pseudo-damage.
Technical Paper

The USAMP Magnesium Powertrain Cast Components Project

2006-04-03
2006-01-0522
Over the past five years, the US Automotive Materials Partnership (USAMP) has brought together representatives from DaimlerChrysler, General Motors, Ford Motor Company and over 40 other participant companies from the Mg casting industry to create and test a low-cost, Mg-alloy engine that would achieve a 15 - 20 % Mg component weight savings with no compromise in performance or durability. The block, oil pan, and front cover were redesigned to take advantage of the properties of both high-pressure die cast (HPDC) and sand cast Mg creep- resistant alloys. This paper describes the alloy selection process and the casting and testing of these new Mg-variant components. This paper will also examine the lessons learned and implications of this pre-competitive technology for future applications.
Technical Paper

The Role of Engine Oil Formulations on Fluid Diagnostics

2002-10-21
2002-01-2677
Historically, vehicle fluid condition has been monitored by measuring miles driven or hours operated. Many current vehicles have more sophisticated monitoring methods that use additional variables such as fuel consumption, engine temperature and engine revolutions to predict fluid condition. None of these monitoring means, however, actually measures a fluid property to determine condition, and that is about to change. New sensors and diagnostic systems are being developed that allow real time measurement of some lubricant physical and/or chemical properties and interpret the results in order to recommend oil change intervals and maximize performance. Many of these new sensors use electrochemical or acoustic wave technologies. This paper examines the use of these two technologies to determine engine oil condition and focuses on the effects of lubricant chemistry on interpreting the results.
Technical Paper

The Measurement and Control of Cyclic Variations of Flow in a Piston Cylinder Assembly

2003-03-03
2003-01-1357
The existence of the cyclic variation of the flow inside an cylinder affects the performance of the engine. Developing methods to understand and control in-cylinder flow has been a goal of engine designers for nearly 100 years. In this paper, passive control of the intake flow of a 3.5-liter DaimlerChrysler engine was examined using a unique optical diagnostic technique: Molecular Tagging Velocimetry (MTV), which has been developed at Michigan State University. Probability density functions (PDFs) of the normalized circulation are calculated from instantaneous planar velocity measurements to quantify gas motion within a cylinder. Emphasis of this work is examination of methods that quantify the cyclic variability of the flow. In addition, the turbulent kinetic energy (TKE) of the flow on the tumble and swirl plane is calculated and compared to the PDF circulation results.
Technical Paper

The KA24E Engine Test for ILSAC GF-3.Part 2. Valve Train Wear Response to Formulation Variables

1998-10-19
982626
The work presented here is the second of two papers investigating the KA24E engine test. The first paper characterized the KA24E engine in terms of the physical and chemical operating environment it presents to lubricants. The authors investigated oil degradation and wear mechanisms, and examined the differences between the KA24E and the Sequence VE engine tests. It was shown that while the KA24E does not degrade the lubricant to the extent that occurs in the Sequence VE, wear could be a serious problem if oils are poorly formulated. This second paper examines the wear response of the KA24E to formulation variables. A statistically designed matrix demonstrated that the KA24E is sensitive to levels of secondary zinc dialkyldithiophosphate (ZDP), dispersant and calcium sulfonate detergent. This matrix also showed that the KA24E appears to have good repeatability for well formulated oils and is a reasonable replacement for the wear component of the Sequence VE.
Technical Paper

The KA24E Engine Test for ILSAC GF-3 Part 1: Engine Design, Operating Conditions and Wear Mechanisms

1998-10-19
982625
The Nissan KA24E engine test is designated to replace the Ford Sequence VE engine test as the low temperature valve train wear requirement for ILSAC (International Lubricant Standardization and Approval Committee) GF-3. The KA24E (recently designated the Sequence IV A) represents much of the current world-wide material and design technology while retaining the sliding cam/follower contact found in earlier engine designs. The work presented here is the first of two reports. In this first report, the physical and chemical environment the KA24E engine presents a lubricant is characterized and compared to those of the Sequence VE engine. Valve train materials and wear modes are investigated and described. Although chemical analysis of drain oils indicate the KA24E procedure does not degrade the lubricant to the extent seen in the Sequence VE test, valve train wear appears to proceed in a similar manner in both tests.
Technical Paper

The Impact of Passenger Car Motor Oils on Emissions Performance

2003-05-19
2003-01-1988
Throughout the evolution of the automobile, passenger car motor oils have been developed to address issues of wear, corrosion, deposit formation, friction, and viscosity stability. As a result, the internal combustion engines are now developed with the expectation that the lubricants to be used in them will deliver certain performance attributes. Metallurgies, clearances, and built-in stresses are all chosen with certain expectations from the lubricant. A family of chemicals that has been universally used in formulating passenger car motor oils is zinc dithiophosphates (ZDPs). ZDPs are extremely effective at protecting highly stressed valve train components against wear failure, especially in engine designs with a sliding contact between cams and followers. While ZDPs' benefits on wear control are universally accepted, ZDPs have been identified as the source of phosphorus, which deactivates noble metal aftertreatment systems.
Technical Paper

The Fatigue Performance of High Temperature Vacuum Carburized Nb Modified 8620 Steel

2007-04-16
2007-01-1007
The bending fatigue performance of high temperature (1050 °C) vacuum carburized Nb modified 8620 steel, with niobium additions of 0.02, 0.06 and 0.1 wt pct, was evaluated utilizing a modified Brugger specimen geometry. Samples were heated at two different rates (20 and 114 °C min-1) to the carburizing temperature resulting in different prior austenite grain structures that depended on the specific Nb addition and heating rate employed. At the lower heating rate, uniform fine grained prior austenite grain structures developed in the 0.06 and 0.1 Nb steels while a duplex grain structure with the presence of large (>200 μm grains) developed in the 0.02 Nb steel. At the higher heating rate the propensity for abnormal grain growth was highest in the 0.02 Nb steel and complete suppression of abnormal grain growth was achieved only with the 0.1 Nb steel.
Technical Paper

The Effective Unloading Modulus for Automotive Sheet Steels

2006-04-03
2006-01-0146
In stamping advanced high strength steels (AHSS), the deviations from desired part geometry caused by springback from a radius, curl, twist, and bow are major impediments to successfully producing AHSS parts. In general, the conventional elastic modulus is used to quantify the strain that occurs on unloading. This unloading strain causes deviations from desired part geometry. Considerable evidence in the literature indicates that for tensile testing, the conventional elastic modulus does not accurately describe the unloading strain. The present study uses new data and results from the literature to examine the average slope of tensile stress strain curves on unloading. This slope is termed the effective unloading modulus. The results from this study quantitatively describe how the effective unloading modulus decreases with increasing strength, prestrain, and unloading time.
Technical Paper

The Effect of Strain Rate on the Sheet Tensile Properties and Formability of Ferritic Stainless Steels

2003-03-03
2003-01-0526
High strain rate sheet tensile tests (up to 300s-1) and Ohio State University (OSU) formability tests (up to an estimated strain rate of 10s-1) were performed to examine the effect of strain rate on the mechanical properties and formability of five ferritic stainless steels: HIGH PERFORMANCE-10™ 409 (HP-10 409), ULTRA FORM® 409 (UF 409), HIGH PERFORMANCE-10™ 439 (HP-10 439), two thicknesses of 18 Cr-Cb™ stainless steel, all supplied by AK Steel, and Duracorr®, a ferrite-tempered martensite dual-phase stainless steel supplied by Bethlehem Steel Corporation. Tensile results show that increasing strain rate resulted in increases in yield stress, flow stress, and stress at instability for all alloys tested. In addition, increases in uniform and total elongation were also found for each of the five alloys.
Technical Paper

The Effect of Reheat Treatments on Fatigue and Fracture of Carburized Steels

1994-03-01
940788
The effects of austenite grain size on the bending fatigue crack initiation and fatigue performance of gas carburized, modified 4320 steels were studied. The steels were identical in composition except for phosphorus concentration which ranged between 0.005 and 0.031 wt%. Following the carburizing cycle, specimens were subjected to single and triple reheat treatments of 820°C for 30 minutes to refine the austenite grain structure, and oil quenched and tempered at 150°C. Specimens subjected to bending fatigue were characterized by light metallography to determine microstructure and grain size, X-ray analysis for retained austenite and residual stress measurements, and scanning electron microscopy for examination of fatigue crack initiation and propagation. The surface austenite grain size ranged from 15 μm in the as-carburized condition to 6 and 4 μm diameter grain size for the single and triple reheat conditions, respectively.
Technical Paper

The Effect of Forging Conditions on the Flow Behavior and Microstructure of a Medium Carbon Microalloyed Forging Steel

1994-03-01
940787
Forging simulations with a 1522 steel microalloyed by additions of 0.25% Mo, 0.13% V and 0.01% Ti were performed on a laboratory thermomechanical processing simulator. The forging conditions included a strain rate of 22s-1, 50% strain, and temperatures in the range from 1200°C to 950°C. The true stress was found to increase with decreasing deformation temperature for all values of instantaneous true strain. The maximum flow stress increased two-fold as deformation temperature decreased from 1200°C to 950°C, and the recrystallized austenite grain size decreased by a factor of two for this same decrease in temperature. Microstructures evolve from bainitic/ferritic at a cooling rate of 1.4°C/s, to fully martensitic at 16.8°C/s, independent of deformation temperature. Room temperature hardnesses depended primarily on cooling rate and were essentially independent of deformation temperature.
Technical Paper

The Development of Predictive Models for Non-Acidic Lubricity Agents (NALA) using Quantitative Structure Activity Relationships (QSAR)

2005-10-24
2005-01-3900
This study describes the use of Quantitative Structure Activity Relationships (QSAR) to develop predictive models for non-acidic Lubricity agents. The work demonstrates the importance of separating certain chemical families to give better and more robust equations rather than grouping a whole data set together. These models can then be used as important tools in further development work by predicting activities of new compounds before actual synthesis/testing.
Technical Paper

Testing Elastomers - Can Correlation Be Achieved Between Machines, Load Cells, Fixtures and Operators?

2001-04-30
2001-01-1443
At present, testing elastomeric parts is performed at a level dictated by the users of the testing equipment. No society or testing group has defined a formal standard of testing or a way to calibrate a testing machine. This is in part due to the difficulty involved with testing a material whose properties are in a constant state of flux. To further complicate this issue, testing equipment, testing procedures, fixtures, and a host of other variables including the operators themselves, all can have an impact on the characterization of elastomers. The work presented in this paper looks at identifying some of the variables of testing between machines, load cells, fixtures and operators. It also shows that correlation can be achieved and should be performed between companies to ensure data integrity.
Technical Paper

Tensile Properties of Steel Tubes for Hydroforming Applications

2004-03-08
2004-01-0512
With the increased use of tubular steel products, especially for automotive hydroforming applications, there is increased interest in understanding the mechanical properties measured by tensile tests from specimens of different orientations in the tube. In this study, two orientations of tensile specimens were evaluated -- axial specimens with and without flattening and flattened circumferential specimens. Three steels were evaluated -- two thicknesses of aluminum killed drawing quality (AKDQ) steel and one thickness of high strength low alloy (HSLA) steel. Mechanical property data were obtained from the flat stock, conventional production tubes and quasi tubes. Quasi tubes were produced from the flat stock on a 3-roll bender, but the quasi tube was not welded or sized.
X