Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Lubricity and Injector Pump Wear Issues with E diesel Fuel Blends

The search for alternative energy sources, particularly renewable sources, has led to increased activity in the area of ethanol blended diesel fuel, or E diesel. E diesel offers potential benefits in reducing greenhouse gases, reducing dependence on crude oil and reducing engine out emissions of particulate matter. However, there are some concerns about the use of E diesel in the existing vehicle fleet. One of the chief concerns of the use of E diesel is the affect of the ethanol on the lubricating properties of the fuel and the potential for fuel system wear. Additive packages that are used to formulate E diesel fuels can improve fuel lubricity and prevent abnormal fuel system wear. This work studies the lubricity properties of several E diesel blends and the diesel fuels that are used to form them. In addition to a variety of bench scale lubricity tests, injector pump tests were performed as an indicator of long term durability in the field.
Technical Paper

Investigations of the Interactions between Lubricant-derived Species and Aftertreatment Systems on a State-of-the-Art Heavy Duty Diesel Engine

The tightening legislation in the on-road heavy-duty diesel area means that pollution control systems will soon be widely introduced on such engines. A number of different aftertreatment systems are currently being considered to meet the incoming legislation, including Diesel Particulate Filters (DPF), Diesel Oxidation Catalysts (DOC) and Selective Catalytic Reduction (SCR) systems. Relatively little is known about the interactions between lubricant-derived species and such aftertreatment systems. This paper describes the results of an experimental program carried out to investigate these interactions within DPF, DOC and SCR systems on a state-of-the-art 9 litre engine. The influence of lubricant composition and lube oil ash level was investigated on the different catalyst systems. In order to reduce costs and to speed up testing, test oil was dosed into the fuel. Tests without dosing lubricant into the fuel were also run.
Technical Paper

A Comprehensive Examination of the Effect of Ethanol-Blended Gasoline on Intake Valve Deposits in Spark-Ignited Engines

Ethanol-gasoline blends are widely understood to present certain technical challenges to engine operation. Despite widespread use of fuels ranging from E5 (5% ethanol in gasoline) in some European countries to E10 (10% ethanol) in the United States to E100 (100% ethanol; “alcool”) in Brazil, there are certain subjects which have only anecdotally been examined. This paper examines two such issues: the effect of ethanol on intake valve deposits (IVD) and the impact of fuel additive on filter plugging (a measure of solubility). The effect of ethanol on IVD is studied along two lines of investigation: the effect of E10 in a multi-fuel data set carried out in the BMW 318i used for EPA and CARB certification, and the effect of varying ethanol content from 0% to 85% in gasoline carried out in a modern flex-fuel vehicle.
Technical Paper

A Comparison of Gasoline Direct Injection and Port Fuel Injection Vehicles: Part II - Lubricant Oil Performance and Engine Wear

Four 1998 Mitsubishi Carismas, two equipped with direct injection (GDI) and two with port fuel injection engines (PFI) were tested in a designed experiment to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant type on engine wear and engine oil performance parameters. Fuel types were represented by an unadditised base fuel meeting EEC year 2000 specifications and the same base fuel plus synthetic deposit control additive packages. Crankcase oils were represented by two types (1) a 5W-30 API SJ/ILSAC GF-2 type engine oil and (2) a 10W-40 API SH/CF ACEA A3/ B3-96 engine oil. The program showed that specific selection of oil additive chemistry may reduce formation of intake valve deposits in GDI cars.. In general, G-DI engines produced more soot and more pentane insolubles and were found to be more prone to what appears to be soot induced wear than PFI engines.
Technical Paper

A Comparison of Gasoline Direct Injection Part I - Fuel System Deposits and Vehicle Performance

Four 1998 Mitsubishi Carismas, two equipped with direct injection and two with port fuel injection engines, were tested in 20,100 km intervals to determine the effect of mileage accumulation cycle, engine type, fuel and lubricant on vehicle deposits and emissions, acceleration and driveability performance. The program showed that engine fuel system deposits, including specifically those on intake valves, combustion chambers and injectors are formed in higher amounts in the GDI engine than the PFI engine. The fuel additive used reduced injector deposits and combustion chamber deposits in the GDI, but had no significant effect on intake valve deposits, which are affected by crankcase oil formulation. In GDI vehicles, deposited engines were found to have increased hydrocarbon and carbon monoxide emissions and poorer fuel economy and acceleration, but lower particulate emissions.