Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Unregulated Exhaust Emissions from Alternate Diesel Combustion Modes

2006-10-16
2006-01-3307
Regulated and unregulated exhaust emissions (individual hydrocarbons, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), and nitro-polynuclear aromatic hydrocarbons (NPAH)) were characterized for the following alternate diesel combustion modes: premixed charge compression ignition (PCCI), and low-temperature combustion (LTC). PCCI and LTC were studied on a PSA light-duty high-speed diesel engine. Engine-out emissions of carbonyl compounds were significantly increased for all LTC modes and for PCCI-Lean conditions as compared to diesel operation; however, PCCI-Rich produced much lower carbonyl emissions than diesel operations. For PAH compounds, emissions were found to be substantially increased over baseline diesel operation for LTC-Lean, LTC-Rich, and PCCI-Lean conditions. PCCI-Rich operation, however, gave PAH emission rates comparable to baseline diesel operation.
Technical Paper

Technical Advantages of Urea SCR for Light-Duty and Heavy-Duty Diesel Vehicle Applications

2004-03-08
2004-01-1292
The 2007 emission standards for both light-duty and heavy-duty diesel vehicles remain a challenge. A level of about 90% NOx conversion is required to meet the standards. Technologies that have the most potential to achieve very high NOx conversion at low temperatures of diesel exhaust are lean NOx traps (LNTs) and Selective Catalytic Reduction (SCR) of NOx using aqueous urea, typically known as Urea SCR. The LNT has the advantage of requiring no new infrastructure, and does not pose any new customer compliance issues. However, Urea SCR has high and durable NOx conversion in a wider temperature window, a lower equivalent fuel penalty, and lower system cost. On a technical basis, Urea SCR has the best chance of meeting the 2007 NOx targets. This paper reviews the results of some demonstration programs for both light-and heavy-duty applications.
Technical Paper

Performance Evaluation of Advanced Emission Control Technologies for Diesel Heavy-Duty Engines

1999-10-25
1999-01-3564
To evaluate the performance of a variety of commercially available exhaust emission control technologies, the Manufacturers of Emission Controls Association (MECA) sponsored a test program at Southwest Research Institute (SwRI). The test engine was a current design heavy-duty diesel engine operated on standard No. 2 diesel (368 ppm) and lower sulfur (54 ppm) diesel fuel. Technologies evaluated included: diesel oxidation catalysts (DOCs), diesel particulate filters (DPFs), selective catalytic reduction (SCR), fuel-borne catalysts (FBCs) in combination with filters and oxidation catalysts, and combinations of the above technologies. The program was structured to demonstrate that a variety of exhaust emission control technologies, including exhaust gas recirculation, could be used to substantially reduce emissions from a modern MY 1998 heavy-duty diesel engine.
Technical Paper

Methodologies to Control DPF Uncontrolled Regenerations

2006-04-03
2006-01-1090
Diesel particulate filters (DPF) have been shown to effectively reduce particulate emissions from diesel engines. However, uncontrolled DPF regeneration can easily damage the DPF. In this paper, three different types of uncontrolled DPF regeneration are defined. They are: Type A: Uncontrolled high initial exotherm at the start of DPF regeneration, Type B: “Runaway” or uncontrolled regeneration, which takes place when the engine goes to idle during normal DPF regeneration, and Type C: Uneven soot distribution causing excess thermal stress during normal DPF regeneration. In this paper, different control strategies are developed for each of the three types of uncontrolled DPF regenerations. These control strategies include SOF control, exhaust flow pattern improvement, as well as EGR control through intake throttling and A/F ratio control.
Technical Paper

Integration of Exhaust Gas Recirculation, Selective Catalytic Reduction, Diesel Particulate Filters, and Fuel-Borne Catalyst for NOx/PM Reduction

2000-06-19
2000-01-1933
Exhaust gas recirculation (EGR) has long been used in gasoline and light-duty diesel engines as a NOx reduction tool. Recently imposed emission regulations led several heavy-duty diesel engine manufacturers to adopt EGR as part of their strategy to reduce NOx. The effectiveness of this technology has been widely documented, with NOx reduction in the range of 40 to 50 percent having been recorded. An inevitable consequence of this strategy is an increase in particulate emission, especially if EGR was used in high engine load modes. Selective catalytic reduction (SCR), a method for NOx reduction, is widely used in stationary applications. There is growing interest and activity to apply it to mobile fleets equipped with heavy-duty diesel engines. Results of this work indicate that SCR has the potential to dramatically reduce NOx in diesel exhaust. Reductions greater than 70 percent were reported by several including the Institute's previous work (SAE Paper No. 1999-01-3564).
Technical Paper

Achieving Heavy-Duty Diesel NOx/PM Levels Below the EPA 2002 Standards--An Integrated Solution

2000-03-06
2000-01-0187
The diesel engine has long been the most energy efficient powerplant for transportation. Moreover, diesels emit extremely low levels of hydrocarbon and carbon monoxide that do not require post-combustion treatment to comply with current and projected standards. It is admittedly, however, difficult for diesel engines to simultaneously meet projected nitrogen oxides and particulate matter standards. Traditionally, measures aimed at reducing one of these two exhaust species have led to increasing the other. This physical characteristic, which is known as NOx/PM tradeoff, remains the subject of an intense research effort. Despite this challenge, there is significant evidence that heavy-duty highway engine manufacturers can achieve substantial emission reductions. Many development programs carried out over the last five years have yielded remarkable results in laboratory demonstrations.
Technical Paper

A Novel Approach for Diesel NOX/PM Reduction

2010-04-12
2010-01-0308
The US EPA emission standards for 2010 on-highway and 2014 non-road diesel engines are extremely stringent, both in terms of oxides of nitrogen (NOX) and particulate matter (PM). Diesel engines typically operate lean and use at least 40-50 percent more air than what is needed for stoichiometric combustion of the fuel. As a result, significant excess oxygen (O₂) is present in diesel exhaust gas which prevents the application of the mature three-way catalyst (TWC) technology for NOX control used in gasoline engines. The objective of this work was to investigate whether or not the catalyzed DPF had a TWC-type of effect on NOX emissions and if so, why and to what extent when used on a diesel engine operating at reduced A/F ratio conditions.
Technical Paper

A Filtration System for High-Pressure Loop EGR

2011-04-12
2011-01-0413
Cooled exhaust gas recirculation (EGR) is widely applied in modern diesels to effectively control nitric oxides (NOx) emission. However, unfiltered high-pressure loop EGR leads to EGR cooler fouling and loss of its effectiveness. Reduced EGR cooler effectiveness often leads to increased NOx emission through increased intake charge temperature and/or reduced EGR flows. Therefore, there is a desire to avoid EGR cooler fouling and its associated problems. Filtering the EGR upstream from the EGR cooler is considered a potential solution to preserve EGR cooler effectiveness over long operating periods and simplify the control of the EGR system. The effect of EGR filter filtration efficiency on the EGR cooler effectiveness was investigated at Southwest Research Institute (SwRI). Alantum, a filter manufacturer from Korea, developed EGR filters having 50 and 70 percent filtration efficiency for this study. A 2008 calibration, V8, A350 International diesel engine was used in this work.
X