Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Technical Paper

Water-Gas-Shift Catalyst Development and Optimization for a D-EGR® Engine

2015-09-01
2015-01-1968
Dedicated Exhaust Gas Recirculation (D-EGR®) technology provides a novel means for fuel efficiency improvement through efficient, on-board generation of H2 and CO reformate [1, 2]. In the simplest form of the D-EGR configuration, reformate is produced in-cylinder through rich combustion of the gasoline-air charge mixture. It is also possible to produce more H2 by means of a Water Gas Shift (WGS) catalyst, thereby resulting in further combustion improvements and overall fuel consumption reduction. In industrial applications, the WGS reaction has been used successfully for many years. Previous engine applications of this technology, however, have only proven successful to a limited degree. The motivation for this work was to develop and optimize a WGS catalyst which can be employed to a D-EGR configuration of an internal combustion engine. This study consists of two parts.
Technical Paper

Water Recovery from Gasoline Engine Exhaust for Water Injection

2018-04-03
2018-01-0369
Water injection (WI) can improve gasoline engine performance and efficiency, and on-board water recovery technology could eliminate the need for customers to refill an on-board water reservoir. In this regard, the technical feasibility of exhaust water recovery (EWR) is described in this paper. Water injection testing was conducted at a full load condition (5000 rpm/18.1 bar BMEP) and a high load condition (3000 rpm/14.0 bar BMEP) on a turbocharged gasoline direction injection (GTDI) engine. Water recovery testing was conducted both after the exhaust gas recirculation (EGR) cooler and after the charge air cooler (CAC) at a high load (3000 rpm/14.0 bar BMEP), as well as a part load (2080 rpm/6.8 bar BMEP) condition, at temperatures ca. 10-15 °C below the dew point of the flow stream. Three types of water separation designs were tested: a passive cyclone separator (CS), a passive membrane separator (MEM), and an active separator (AS).
Journal Article

Visual, Thermodynamic, and Electrochemical Analysis of Condensate in a Stoichiometric Spark-Ignited EGR Engine

2018-04-03
2018-01-1406
The objectives of this project were to investigate the corrosivity of condensate in a stoichiometric spark-ignited (SI) engine when running exhaust gas recirculation (EGR) and to determine the effects of sulfur-in-fuel on corrosion. A 2.0 L turbocharged direct-injected SI engine was operated with low-pressure EGR for this study. The engine was instrumented for visual, thermodynamic, and electrochemical analyses to determine the potential for corrosion at locations where condensation was deemed likely in a low-pressure loop EGR (LPL-EGR) engine. The electrochemical analysis was performed using multi-electrode array (MEA) corrosion probes. Condensate was also collected and analyzed. These analyses were performed downstream of both the charge air cooler (CAC) and the EGR cooler. It was found that while conditions existed for sulfuric acid to form with high-sulfur fuel, no sulfuric acid was detected by any of the measurement methods.
Technical Paper

Vektron® 6913 Gasoline Additive NOX Evaluation Fleet Test Program

2001-05-07
2001-01-1997
A 28-vehicle fleet test was executed to verify and quantify the NOX emissions reductions achieved through the use of Infineum's Vektron 6913 gasoline additive. The fleet composition and experimental design were finalized in collaborative discussions with US Environmental Protection Agency (EPA) Office of Transportation & Air Quality (OTAQ) and consultation / advice from several major US automotive manufacturers. The test was conducted over a period of five months at Southwest Research Institute. Statistical analysis of the emissions data indicated a 10% average fleet reduction in NOX emissions without any negative impact on other criteria pollutants (CO, HC) or fuel economy.
Technical Paper

Vehicle Dynamometer for Hybrid Truck Development

2002-11-18
2002-01-3129
A special vehicle dynamometer has been developed that allows engineers to evaluate driveline components and control algorithms for advanced, electrically-assisted drive systems on commercial vehicles. This dynamometer allows objective measurements of performance, fuel economy, and exhaust emissions, while the full vehicle is operated over a specified driving cycle. This system can be used to exercise the electric motor, engine, transmission and battery systems on Medium Duty Hybrid Trucks - in regeneration as well as power mode - all indoors and in a controlled, repeatable environment. This paper will provide descriptions of the operating goals, control features, and results of testing with this dynamometer. Once the various parameters have been optimized for fuel and emissions performance in this facility, the vehicle can be evaluated where it counts - on the road.
Technical Paper

Vehicle Drive Cycle Fuel Economy Prediction Using Single Cylinder Engine Data

2019-04-02
2019-01-0628
The confluence of fuel economy improvement requirements and increased use of ethanol as a gasoline blend component has led to various studies into the efficiency and performance benefits to be had when using high octane number, high ethanol content fuels in modern engines. As part of a comprehensive study of the autoignition of fuels in both the CFR octane rating engine and a modern, direct injection, turbocharged spark ignited engine, a series of fuel blends were prepared with market relevant ranges of octane numbers and ethanol blends levels. The paper reports on the first part of this study where fuel flow measurements were done on a single cylinder research engine, utilizing a GM LHU combustion system, and then used to predict drive cycle fuel economy. For a range of engine speeds and manifold air pressures, spark timing was adjusted to achieve either the maximum brake torque (MBT) or a matched 50 % mass fraction burnt location.
Technical Paper

Vegetable Oils as Alternative Diesel Fuels: Degradation of Pure Triglycerides During the Precombustion Phase in a Reactor Simulating a Diesel Engine

1992-02-01
920194
Vegetable oils are candidates for alternative fuels in diesel engines. These oils, such as soybean, sunflower, rapeseed, cottonseed, and peanut, consist of various triglycerides. The chemistry of the degradation of vegetable oils when used as alternate diesel fuels thus corresponds to that of triglycerides. To study the chemistry occurring during the precombustion phase of a vegetable oil injected into a diesel engine, a reactor simulating a diesel engine was constructed. Pure triglycerides were injected into the reactor in order to determine differences in the precombustion behavior of the various triglycerides. The reactor allowed motion pictures to be prepared of the injection event as the important reaction parameters, such as pressure, temperature, and atmosphere were varied. Furthermore, samples of the degradation products of precombusted triglycerides were collected and analyzed (gas chromatography / mass spectrometry).
Journal Article

Valve Guide for High Temperature Applications

2008-04-14
2008-01-1110
Sintered valve guides are increasingly used in various engine applications due to their superior durability and cost. Typical valve guide materials are low alloyed materials of the type Fe-Cu-C. More severe applications may require higher alloying content. One such application is EGR where the exhaust temperatures are much higher as compared to the conventional automotive valve guide. A new material was developed to work in this harsh environment. The object of this paper is to report development of this material including material properties and durability test results.
Technical Paper

Utilizing Multiple Combustion Modes to Increase Efficiency and Achieve Full Load Dual-Fuel Operation in a Heavy-Duty Engine

2019-04-02
2019-01-1157
Reactivity Controlled Compression Ignition (RCCI) natural gas/diesel dual-fuel combustion has been shown to achieve high thermal efficiency with low NOX and PM emissions, but has traditionally been limited to low to medium loads. High BMEP operation typically requires high substitution rates (i.e., >90% NG), which can lead to high cylinder pressure, pressure rise rates, knock, and combustion loss. In previous studies, compression ratio was decreased to achieve higher load operation, but thermal efficiency was sacrificed. For this study, a multi-cylinder heavy-duty engine that has been modified for dual-fuel operation (diesel direct-injection and natural gas (NG) fumigated into the intake stream) was used to explore RCCI and other dual-fuel combustion modes at high compression ratio, while maintaining stock lug curve capability (i.e., extending dual-fuel operation to high loads where conventional diesel combustion traditionally had to be used).
Technical Paper

Using Cloud Point Depressants Opportunistically To Reduce No.2 Diesel Fuel Cloud Point Giveaway

2001-05-07
2001-01-1927
Diesel fuel is a blend of various middle distillate components separated at the refinery. The composition and characteristics of the diesel fuel blend changes daily if not hourly because of normal process variation, changing refinery processing conditions, changing crude oil diet or changing diesel fuel and kerosene market conditions. Regardless of the situation going on at the refinery or the market, the resultant diesel fuel must consistently meet established cloud point specifications. To consistently meet the cloud point specifications, refiners are forced to blend their diesel fuels in such a way that the resultant blend is always on the low side of the cloud point specification even when the refining process adversely changes the fuel characteristics. This practice has the effect of producing several degrees of cloud point “giveaway” when the refinery is not experiencing adverse swings in product quality.
Technical Paper

Using Advanced Emission Control Systems to Demonstrate LEV II ULEV on Light-Duty Gasoline Vehicles

1999-03-01
1999-01-0774
A program to demonstrate the performance of advanced emission control systems in light of the California LEV II light-duty vehicle standards and the EPA's consideration of Tier II emission standards was conducted. Two passenger cars and one light-duty pick-up truck were selected for testing, modification, and emission system performance tuning. All vehicles were 1997 Federal Tier I compliant. The advanced emission control technologies evaluated in this program included advanced three-way catalysts, high cell density substrates, and advanced thermally insulated exhaust components. Using these engine-aged advanced emission control technologies and modified stock engine control strategies (control modifications were made using an ERIC computer intercept/control system), each of the three test vehicles demonstrated FTP emission levels below the proposed California LEV II 193,000 km (120,000 mile) ULEV levels.
Technical Paper

Using 3D Multi-Body Simulation to Evaluate Future Truck Technologies

2005-04-11
2005-01-0934
This document presents the results of computer-based, vehicle dynamics performance assessments of Future Truck concepts with such features as a variable height, hydraulic, trailing arm suspension, skid steering, and in-hub electric drive motors. Fully three-dimensional Future Truck models were created using a commercially available modeling and simulation methodology and limited validation studies were performed by comparing model predictions with baseline, validated model predictions from another vehicle in the same size and class as the Future Truck concept vehicles. The models were considered accurate enough to predict various aspects of ride quality and stability performance, critical to US Army Objective Force mission needs. One-to-one comparisons of the Future Truck concepts and a standard, solid-axle, Heavy Tactical Vehicle (HTV) operating in various terrain and obstacle negotiation conditions were performed.
Technical Paper

Use of Butane as an Alternative Fuel-Emissions from a Conversion Vehicle Using Various Blends

1995-10-01
952496
This paper describes experiments conducted to determine the regulated emissions, ozone-forming potentials, specific reactivities, and reactivity adjustment factors for eight butane and propane alternative fuel blends run on a light-duty vehicle, emission certified to be a California transitional low emission vehicle (TLEV) and converted to operate on liquefied petroleum gas (LPG). Duplicate EPA FTP emission tests were conducted with each fuel. Hydrocarbon speciation was utilized to determine reactivity-adjusted non-methane organic gases (NMOG) emissions for one test on each fuel. Results showed that all eight fuels could allow the converted vehicle to pass California ultra-low emission vehicle (ULEV) NMOG and oxides of nitrogen (NOx) standards. Six of the eight fuels could allow the vehicle to pass ULEV carbon monoxide (CO) standards. BUTANE has been an important gasoline blending component for many years.
Technical Paper

Use of Alcohol-in-Diesel Fuel Emulsions and Solutions in a Medium-Speed Diesel Engine

1981-02-01
810254
The use of alcohol as a supplemental fuel for a medium-speed diesel engine was investigated using a two-cylinder, two-stroke test engine. Both stabilized and unstabilized emulsions of methanol-in-diesel fuel and ethanol-in-diesel fuel were tested. Also, anhydrous ethanol/diesel fuel solutions were evaluated. Maximum alcohol content of the emulsions and solutions was limited by engine knocking due to a reduction in fuel cetane number. Engine power and thermal efficiency were slightly below baseline diesel fuel levels in the high and mid-speed ranges, but were somewhat improved at low speeds during tests of the unstabilized emulsions and the ethanol solutions. However, thermal efficiency of the stabilized emulsions fell below baseline levels at virtually all conditions.
Technical Paper

Updating China Heavy-Duty On-Road Diesel Emission Regulations

2012-04-16
2012-01-0367
With the rapid expansion of the automotive market in China, air quality in the major cities has become a severe concern. Great efforts have been made in introducing new emission regulations; however, fuel and lubricant qualities, emissions aftertreatment system durability and in-use compliance to the emissions regulations still require significant improvement. China follows the European Union (EU) emission regulations in general, but different levels of standards exist. This paper gives a comprehensive overview of the current and near-future heavy-duty diesel emission regulations, as well as fuel and lubricant specifications.
Journal Article

Unique Needs of Motorcycle and Scooter Lubricants and Proposed Solutions for More Effective Performance Evaluation

2015-11-17
2015-32-0708
The operating conditions of a typical motorcycle are considerably different than those of a typical passenger car and thus require an oil capable of handling the unique demands. One primary difference, wet clutch lubrication, is already addressed by the current JASO four-stroke motorcycle engine oil specification (JASO T 903:2011). Another challenge for the oil is gear box lubrication, which may be addressed in part with the addition of a gear protection test in a future revision to the JASO specification. A third major difference between a motorcycle oil and passenger car oil is the more severe conditions an oil is subjected to within a motorcycle engine, due to higher temperatures, engine speeds and power densities. Scooters, utilizing a transmission not lubricated by the crankcase oil, also place higher demands on an engine oil, once again due to higher temperatures, engine speeds and power densities.
Journal Article

Understanding the Octane Appetite of Modern Vehicles

2016-04-05
2016-01-0834
Octane appetite of modern engines has changed as engine designs have evolved to meet performance, emissions, fuel economy and other demands. The octane appetite of seven modern vehicles was studied in accordance with the octane index equation OI=RON-KS, where K is an operating condition specific constant and S is the fuel sensitivity (RONMON). Engines with a displacement of 2.0L and below and different combinations of boosting, fuel injection, and compression ratios were tested using a decorrelated RONMON matrix of eight fuels. Power and acceleration performance were used to determine the K values for corresponding operating points. Previous studies have shown that vehicles manufactured up to 20 years ago mostly exhibited negative K values and the fuels with higher RON and higher sensitivity tended to perform better.
Technical Paper

Understanding Soot Mediated Oil Thickening Part 6: Base Oil Effects

1998-10-19
982665
One of the key functions of lubricating oil additives in diesel engines is to control oil thickening caused by soot accumulation. Over the last several years, it has become apparent that the composition of the base oil used within the lubricant plays an extremely important role in the oil thickening phenomenon. In particular, oil thickening observed in the Mack T-8 test is significantly affected by the aromatic content of the base oil. We have found that the Mack T-8 thickening phenomenon is associated with high electrical activity, i.e., engine drain oils which exhibit high levels of viscosity increase show significantly higher conductivities. These findings suggest that electrical interactions are involved in soot-induced oil thickening.
Technical Paper

Ultra Low Emissions and High Efficiency from an On-Highway Natural Gas Engine

1998-05-04
981394
Results from work focusing on the development of an ultra low emissions, high efficiency, natural gas-fueled heavy- duty engine are discussed in this paper. The engine under development was based on a John Deere 8.1L engine; this engine was significantly modified from its production configuration during the course of an engine optimization program funded by the National Renewable Energy Laboratory. Previous steady-state testing indicated that the modified engine would provide simultaneous reductions in nonmethane hydrocarbon emissions and fuel consumption while maintaining equivalent or lower NOx levels. Federal Test Procedure transient tests confirmed these expectations. Very low NOx emissions, averaging 1.0 g/bhp-hr over hot-start cycles, were attained; at these conditions, reductions in engine-out nonmethane hydro-carbons emissions (NMHC) were approximately 30 percent, and fuel consumption over the cycle was also reduced relative to the baseline.
X