Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Results from Calculating the Acceleration at an ELR in a Steer Induced Rollover Crash Test

2014-04-01
2014-01-0528
Assuming rigid body motion, recorded acceleration and recorded roll rates at the center of gravity, equations are used to calculate the local three-dimensional accelerations at hypothetical seating positions' Emergency Locking [seat belt] Retractors (ELR) during a steer induced rollover crash. For a threshold of 0.7 g, results demonstrated that intervals in the vehicle's response that may cause the ELR's inertial sensor to move into a neutral zone were limited to localized high magnitude negative vertical acceleration events during the rollover segment with a median duration of 4 ms, average duration of 4.8 ms and a maximum calculated duration of 31.7 ms. Changing the threshold to 0.35 g reduced the interval count by 70 percent and maximum duration by approximately 50 percent.
Technical Paper

Process Simulation and Springback Control in Plane Strain Sheet Bending

1993-03-01
930280
Plane strain bending (e.g. bending about a straight line) is a major sheet forming operation and it is practiced as brake bending (air bending, U-die, V-die and wiping-die bending). Precise prediction of springback is the key to the design of the bending dies and to the control of the process and press brake to obtain close tolerances in bent parts. In this paper, reliable mathematical models for press brake bending are presented. These models can predict springback, bendability, strain and stress distributions, and the maximum loads on the punch and die. The elasto-plastic bending model incorporates the true (nonlinear) strain distribution across the sheet thickness, Swift's strain hardening law, Hill's 1979 nonquadratic yield criterion for normal anisotropic materials, and plane strain deformation mode.
Technical Paper

IC Engine Fuel System Diagnostics Using Observer with Binary Sensor Measurement

1997-02-24
970031
In this paper, we propose an IC engine fuel system diagnostic algorithm based on a discrete-event nonlinear observer using the production oxygen sensor. A mean value engine model is used to describe the engine dynamics. A procedure for designing the discrete event based observer is presented and applied to estimate important engine variables using the measured binary oxygen sensor output. The estimated variables are then used to perform diagnostics of the fuel system of the IC engine. Experimental results on a multi-cylinder production engine are presented to demonstrate the effectiveness of the proposed method.
Technical Paper

Estimation of Material Properties from Cyclic Bend Test

2000-10-03
2000-01-2660
The motivation of this paper is inverse estimation of the material properties for sheet metals subjected to cyclic loading. Cyclic three-point bending tests are performed. Bending moments are computed from the measured data, namely, punch stroke, punch load, bending strain and bending angle. Bending moments are also calculated based on the selected material model in which normal anisotropy and combined hardening are considered. Material parameters are identified by minimizing the difference between these two bending moments. Modified Levenberg-Marquardt method is used in the optimization procedure. Stress-strain curves are generated with the optimized material parameters.
Technical Paper

Estimation and Control of Drawbead Forces in Sheet Metal Forming

1994-03-01
940941
In sheet metal forming, drawbeads are often used to control uneven material flow which may cause defects such as wrinkles, fractures, surface distortion and springback. Appropriate setting and adjusting the drawbead force is one of the most important parameters in sheet forming process control. However, drawbead design and drawbead force adjustment still rely on trial-and-error procedures. This paper summarizes the guidelines in drawbead design, evaluates a number of mathematical models in estimating drawbead forces, and investigates the effects of sheet thickness, material properties, drawbead geometry and penetration on the drawbead force.
Technical Paper

Effects of Section Size and Microstructural Features on the Mechanical Properties of Die Cast AZ91D and AM60B Magnesium Alloy Test Bars

1999-03-01
1999-01-0927
Reported tensile and fatigue properties of die cast AZ91D and AM60B magnesium alloys indicate that those values depend on the size and shape of the test samples and their global porosities. This paper reviews the mechanical properties reported in the open literature for these die cast alloys and indicates that section thickness and global porosity are inadequate for predicting the tensile and fatigue properties of die cast AZ91D and AM60B magnesium alloys.
Technical Paper

Developments in Vehicle Center of Gravity and Inertial Parameter Estimation and Measurement

1995-02-01
950356
For some vehicle dynamics applications, an estimate of a vehicle's center of gravity (cg) height and mass moments of inertia can suffice. For other applications, such as vehicle models and simulations used for vehicle development, these values should be as accurate as possible. This paper presents several topics related to inertial parameter estimation and measurement. The first is a simple but reliable method of estimating vehicle mass moment of inertia values from data such as the center of gravity height, roof height, track width, and other easily measurable values of any light road vehicle. The second is an error analysis showing the effect, during a simple static cg height test, of vehicle motion (relative to the support system) on the vehicle's calculated cg height. A method of accounting for this motion is presented. Similarly, the effects of vehicle motion are analyzed for subsequent mass moment of inertia tests.
Technical Paper

Development of Co-Continuous Ceramic Composite Materials for Specific Applications

1994-03-01
940850
The process of producing co-continuous ceramic composite material has been investigated in order to provide a greater understanding of the formation mechanism and hence evaluate the viability of commercial applications for these exciting new materials. The ease of manufacture for components combined with the low production cost hold great promise for the production of brake rotors, brake calipers, piston crowns, cylinder liners, gears and turbine compressors. Practical issues such as bonding to this material, together with the machinability have been addressed, our findings are presented in this paper.
Technical Paper

A Study of Vehicle Class Segregation Using Linear Handling Models

1995-02-01
950307
The handling, stability, and rollover resistance of vehicles is presently being studied by both the automotive industry and the National Highway and Traffic Safety Administration (NHTSA). However, to study the handling and rollover behavior of each vehicle on the road is not feasible. The ability to categorize and compare the rollover and handling behavior of various vehicles is a subject of considerable research interest. This paper examines the possibility of characterizing vehicle classes through the use of a three degree-of-freedom linear model. Initially, segregation is studied by evaluating the eigenvalue location in the complex domain for vehicle sideslip velocity, yaw rate, and roll angle. Then the influence of numerator dynamics on vehicle behavior is studied and vehicle class segregation is attempted through evaluation of the amplitude ratio of the frequency responses for sideslip velocity, yaw rate, and roll angle.
X