Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle-in-Virtual-Environment Method for ADAS and Connected and Automated Driving Function Development, Demonstration and Evaluation

2024-04-09
2024-01-1967
The current approach for new Advanced Driver Assistance System (ADAS) and Connected and Automated Driving (CAD) function development involves a significant amount of public road testing which is inefficient due to the number miles that need to be driven for rare and extreme events to take place, thereby being very costly also, and unsafe as the rest of the road users become involuntary test subjects. A new development, evaluation and demonstration method for safe, efficient, and repeatable development, demonstration and evaluation of ADAS and CAD functions called Vehicle-in-Virtual –Environment (VVE) was recently introduced as a solution to this problem. The vehicle is operated in a large, empty, and flat area during VVE while its localization and perception sensor data is fed from the virtual environment with other traffic and rare and extreme events being generated as needed.
Technical Paper

Vehicle to Vehicle Interaction Maneuvers Choreographed with an Automated Test Driver

2009-04-20
2009-01-0440
Modern passenger cars are being equipped with advanced driver assistance systems such as lane departure warning, collision avoidance systems, adaptive cruise control, etc. Testing for operation and effectiveness of these warning systems involves interaction between vehicles. While dealing with multiple moving vehicles, obtaining discriminatory results is difficult due to the difficulty in minimizing variations in vehicle separation and other parameters. This paper describes test strategies involving an automated test driver interacting with another moving vehicle. The autonomous vehicle controls its state (including position and speed) with respect to the target vehicle. Choreographed maneuvers such as chasing and overtaking can be performed with high accuracy and repeatability that even professional drivers have difficulty achieving. The system is also demonstrated to be usable in crash testing.
Technical Paper

Vehicle Characterization Through Pole Impact Testing, Part II: Analysis of Center and Offset Center Impacts

2005-04-11
2005-01-1186
The severity of an impact in terms of the acceleration in the occupant compartment is dependent not only on the change in vehicle velocity, but also the time for the change in velocity to occur. These depend on the geometry and stiffness of both the striking vehicle and struck object. In narrow-object frontal impacts, impact location can affect the shape and duration of the acceleration pulse that reaches the occupant compartment. In this paper, the frontal impact response of a full-sized pickup to 10 mile per hour and 20 mile per hour pole impacts at the centerline and at a location nearer the frame rails is compared using the acceleration pulse shape, the average acceleration in the occupant compartment, and the residual crush. A bilinear curve relating impact speed to residual crush is developed.
Technical Paper

Use of Robust DOB/CDOB Compensation to Improve Autonomous Vehicle Path Following Performance in the Presence of Model Uncertainty, CAN Bus Delays and External Disturbances

2018-04-03
2018-01-1086
Autonomous vehicle technology has been developing rapidly in recent years. Vehicle parametric uncertainty in the vehicle model, variable time delays in the CAN bus based sensor and actuator command interfaces, changes in vehicle sped, sensitivity to external disturbances like side wind and changes in road friction coefficient are factors that affect autonomous driving systems like they have affected ADAS and active safety systems in the past. This paper presents a robust control architecture for automated driving systems for handling the abovementioned problems. A path tracking control system is chosen as the proof-of-concept demonstration application in this paper. A disturbance observer (DOB) is embedded within the steering to path error automated driving loop to handle uncertain parameters such as vehicle mass, vehicle velocities and road friction coefficient and to reject yaw moment disturbances.
Technical Paper

The Large Omnidirectional Child (LODC) ATD: Biofidelity Comparison with the Hybrid III 10 Year Old

2016-11-07
2016-22-0017
When the Hybrid III 10-year old (HIII-10C) anthropomorphic test device (ATD) was adopted into Code of Federal Regulations (CFR) 49 Part 572 as the best available tool for evaluating large belt-positioning booster seats in Federal Motor Vehicle Safety Standard (FMVSS) No. 213, NHTSA stated that research activities would continue to improve the performance of the HIII-10C to address biofidelity concerns. A significant part of this effort has been NHTSA’s in-house development of the Large Omnidirectional Child (LODC) ATD. This prototype ATD is comprised of (1) a head with pediatric mass properties, (2) a neck that produces head lag with Z-axis rotation at the atlanto-occipital joint, (3) a flexible thoracic spine, (4) multi-point thoracic deflection measurement capability, (5) skeletal anthropometry representative of a seated child, and (6) an abdomen that can directly measure belt loading.
Technical Paper

The Application of Piezoceramic Actuation to Direct Fuel Injection

2003-09-16
2003-32-0001
With increasing demands to reduce emissions from internal combustion engines, engine manufacturers are forced to seek out new technology. One such technology employed primarily in the diesel and two-stroke engine community is direct-injection (DI). Direct injection has shown promising results in reduction of CO and NOx for both two- and four-stroke engines. While having been used for several years in the diesel industry, direct injection has been scrutinized for an inability to meet future requirements to reduce particulate matter emissions. Direct injection has also came under fire for complicating fuel delivery systems, thus making it cost prohibitive for small utility engine manufacturers. Recent research shows that the application of piezo-driven actuators has a positive effect on soot formation reduction for diesel engines and as this paper will distinguish, has the ability to simplify direct injection fuel delivery systems in general.
Technical Paper

Suspension Parameter Measurement Using Side-Pull Test To Enhance Modeling of Vehicle Roll

1999-03-01
1999-01-1323
This paper describes a new laboratory test facility for measuring suspension parameters that affect rollover. The Side-Pull mechanism rolls the test vehicle through a cable attached rigidly at its center of gravity (CG). Changes in wheel camber and wheel steer angles are measured as a function of body roll angle. The roll test simulates a steady-state cornering. Thus, both compliance and kinematic forces are fed simultaneously to the vehicle as they would be applied in a real cornering situation. The lateral load transfer, and roll angle as a function of simulated lateral acceleration is determined. The Side-Pull Roll Measurement has advantages over the conventional roll tests where the rolling force couple is applied vertically. The Side-Pull mechanism rolls the vehicle in a unrestricted way with horizontal forces applied at the tire / pad contact and the CG location. Thus, the measurements take into account coupling of compliance with roll.
Technical Paper

Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2–D PIV and 3–D PTV

1999-03-01
1999-01-0957
The evolution of the flow field inside an IC engine during the intake stroke was studied using 2 different experimental techniques, namely the 2–D Particle Image Velocimetry (2–D PIV) and 3–D Particle Tracking Velocimetry (3–D PTV) techniques. Both studies were conducted using a water analog engine simulation rig. The head tested was a typical pent–roof head geometry with two intake valves and one exhaust valve, and the simulated engine operating point corresponded to an idle condition. For both the 2–D PIV and 3–D PTV experiments, high–speed CCD cameras were used to record the motion of the flow tracer particles. The camera frame rate was adjusted to correspond to 1/4° of crank angle (CA), hence ensuring excellent temporal resolution for velocity calculations. For the 2–D PIV experiment, the flow field was illuminated by an Argon–ion laser with laser–sheet forming optics and this laser sheet was introduced through a transparent piston crown to illuminate the center tumble plane.
Technical Paper

Structure-Borne Noise Measures and Their Correlation to Sound Radiation over a Broad Range of Frequencies

2003-05-05
2003-01-1450
Structure-borne noise within vehicle structures is often transmitted in a multi-dimensional manner and thus the vibro-acoustic model(s) of automotive powertrain or chassis must incorporate longitudinal and transverse (flexural) motions as well as their couplings. In this article, we employ the continuous system theory to model a typical vibration isolator (say the engine mounting system) and a compliant receiver that could simulate the body structure. The powertrain source is however assumed to be rigid, and both harmonic force and moment excitations are considered. Our analysis is limited to a linear time-invariant system, and the frequency domain based mobility method is utilized to synthesize the overall system. Contributions of both in-plane and flexural motions to structure-borne and radiated noise are incorporated. Two examples are considered to illustrate the methodology.
Technical Paper

Sound Radiation from a Disk Brake Rotor Using a Semi-Analytical Method

2003-05-05
2003-01-1620
Modal sound radiation of a brake rotor is expressed in terms of analytical solutions of a generic thick annular disk having similar geometric dimensions. Finite element method is used to determine structural modes and response. Vibro-acoustic responses such as surface velocities and radiated sound pressures due to a multi-modal excitation are calculated from synthesized structural modes and modal acoustic radiation of the rotor using the modal expansion technique. In addition, acoustic power and radiation efficiency spectra corresponding to a specific force excitation are obtained from the sound pressure data. Accuracy of the new semi-analytical method has been confirmed by purely numerical analyses based on finite element and boundary element models. Our method should lead to an improved understanding of the sound radiation from a brake rotor and strategies to minimize squeal noise radiation could be formulated.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

2003-06-16
2003-01-2100
Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

Simulation Framework for Testing Autonomous Vehicles in a School for the Blind Campus

2021-04-06
2021-01-0118
With the advent of increasing autonomous vehicles on public roads, the safety of vulnerable road users such as pedestrians, cyclists, etc. has never been more important. These especially include Blind or Visually Impaired (BVI) pedestrians who face difficulty in making confident decisions in road crossings without the help of accessible pedestrian signals (APS). This paper addresses some of the safety measures that can be taken to improve and assess the safety of BVI pedestrians in a controlled environment like a BVI school campus where autonomous vehicles are operated. The majority of research on autonomous vehicle safety does not consider the edge cases of encounters with BVI pedestrians. Based on this motivation, requirements and characteristics of Non-BVI and BVI pedestrians have been stated along with the motion models used to predict their future movements. Existing tools based on Bayesian multi-model filters were used for pedestrian tracking and motion predictions.
Technical Paper

Simplified MADYMO Model of the IHRA Head-form Impactor

2006-07-04
2006-01-2349
Interest in pedestrian head injury has prompted a need to measure the potential of head injury resulting from vehicular impacts. A variety of head impactors have been developed to fulfill this measurement need. A protocol has been developed by the International Harmonization Research Activity (IHRA) to use head impactor measurements to predict head injury. However, the effect of certain characteristics of the various head impactors on the measurement procedure is not well understood. This includes the location of the accelerometers within the head-form and testing the head-form under the variety of conditions necessary to establish its global performance. To address this problem, a simple model of the IHRA head-form has been developed. This model was created using MADYMO© and consists of a solid sphere with a second sphere representing the vinyl covering. Stiffness and damping characteristics of the vinyl covering were determined analytically from drop test data of an IHRA head-form.
Journal Article

Semitrailer Torsional Stiffness Data for Improved Modeling Fidelity

2011-09-13
2011-01-2163
Vehicle dynamics models employed in heavy truck simulation often treat the semitrailer as a torsionally rigid member, assuming zero deflection along its longitudinal axis as a moment is applied to its frame. Experimental testing, however, reveals that semitrailers do twist, sometimes enough to precipitate rollover when a rigid trailer may have remained upright. Improving the model by incorporating realistic trailer roll stiffness values can improve assessment of heavy truck dynamics, as well as an increased understanding of the effectiveness of stability control systems in limit handling maneuvers. Torsional stiffness measurements were conducted by the National Highway Traffic Safety Administration (NHTSA) for eight semitrailers of different types, including different length box vans, traditional and spread axle flat beds, and a tanker.
Technical Paper

Scenario Regeneration using a Hardware-in-the-loop Simulation Platform to Study ABS and ESC Performance Benefits

2015-09-29
2015-01-2835
This study was performed to showcase the possible applications of the Hardware-in-the-loop (HIL) simulation environment developed by the National Highway Traffic Safety Administration (NHTSA), to test heavy truck crash avoidance safety systems. In this study, the HIL simulation environment was used to recreate a simulation of an actual accident scenario involving a single tractor semi-trailer combination. The scenario was then simulated with and without an antilock brake system (ABS) and electronic stability control (ESC) system to investigate the crash avoidance potential afforded by the tractor equipped with the safety systems. The crash scenario was interpreted as a path-following problem, and three possible driver intended paths were developed from the accident scene data.
Technical Paper

Response of the 6-Month-Old CRABI in Forward Facing and Rear Facing Child Restraints to a Simulated Real World Impact

2002-03-04
2002-01-0026
It is commonly recommended to use infant/child restraints in the rear seat, and that until an infant reaches certain age, weight and height criteria, the infant restraint should be placed rear facing. This paper will describe the injuries suffered by an infant that was restrained in a forward-facing child seat placed in the front passenger seating position during a real world collision. Based on this collision, a full-scale vehicle to barrier impact test was performed. For this test, two 6-month-old CRABI dummies were used in identical child restraints. One of the restraints was placed in the front passenger seat in a forward facing configuration, and the other was placed in the right rear seating position in a rear-facing configuration. This paper provides a detailed discussion of the results of this test, including comparisons of the specific kinematics for both the restraint/child dummy configurations.
Technical Paper

Response of Reclined Post Mortem Human Subjects to Frontal Impact

2006-04-03
2006-01-0674
The prospect of a vehicle occupant sustaining injury in a crash is dependant on many factors, including deceleration, restraint availability, restraint usage, vehicle interior geometry, and seating configuration. The relationship between these factors and injury potential has been determined by testing post-mortem human subjects and anthropomorphic test devices to evaluate occupant response to impact. Such testing by the host of researchers studying occupant injury has generated information on occupant response to impact covering a wide range of factors influencing injury outcome. There has been little testing performed with the seatback reclined from the normal position. As a result, little is known of the response of a vehicle occupant in this configuration beyond the obvious potential of the pelvis to submarine under the lap belt. There exists a need to study occupant response with a reclined seatback when submarining is not present.
Technical Paper

Response of Neck Muscles to Rear Impact in the Presence of Bracing

2006-07-04
2006-01-2369
In this research, cervical muscle behavior in rear impact accidents was investigated. Specifically, cervical muscle forces and muscle lengthening velocities were investigated with respect to cervical injuries. Variation of the onset time for muscle activation, variation of muscle activation level and variation of rear impact pulses were considered. The human body simulation computer program, MADYMO and anthropometric numerical human model were used to evaluate the neck. The factors mentioned above were examined with specific data being obtained from several different literature sources. Cervical muscles were separated into three groups, the sternocleidomastoideus, the flexor muscle group and the extensor muscle group. Longuscolli and spleniuscapitis were selected to represent the flexor muscle and extensor muscle groups respectively. The values and trends of the muscle forces and lengthening velocities are investigated in each muscle group.
Technical Paper

Predicting Desired Temporal Waypoints from Camera and Route Planner Images using End-To-Mid Imitation Learning

2021-04-06
2021-01-0088
This study is focused on exploring the possibilities of using camera and route planner images for autonomous driving in an end-to-mid learning fashion. The overall idea is to clone the humans’ driving behavior, in particular, their use of vision for ‘driving’ and map for ‘navigating’. The notion is that we humans use our vision to ‘drive’ and sometimes, we also use a map such as Google/Apple maps to find direction in order to ‘navigate’. We replicated this notion by using end-to-mid imitation learning. In particular, we imitated human driving behavior by using camera and route planner images for predicting the desired waypoints and by using a dedicated control to follow those predicted waypoints. Besides, this work also places emphasis on using minimal and cheaper sensors such as camera and basic map for autonomous driving rather than expensive sensors such Lidar or HD Maps as we humans do not use such sophisticated sensors for driving.
Technical Paper

Predicting Aircraft Performance Degradation Due to Ice Accretion

1983-02-01
830742
An analytical method to predict the performance degradation of aircraft with ice accretion is presented. Early research on airfoil icing and the effects of ice on aircraft are reviewed. Data on the performance degradation of airfoils due to ice are presented as they apply to the aircraft performance analysis. A computer code has been written and results are discussed.
X