Refine Your Search

Topic

Search Results

Technical Paper

Validation of a Hybrid Finite Element Formulation for Mid-Frequency Analysis of Vehicle Structures

2007-05-15
2007-01-2303
The hybrid Finite Element Analysis (hybrid FEA) has been developed for performing structure-borne computations in automotive vehicle structures [1, 2 and 3]. The hybrid FEA method combines conventional FEA with Energy FEA (EFEA). Conventional FEA models are employed for modeling the behavior of the stiff members in a system. Appropriate damping and spring or mass elements are introduced in the connections between stiff and flexible members in order to capture the presence of the flexible members during the analyses of the stiff ones. The component mode synthesis method is combined with analytical solutions for determining the driving point conductance at joints between stiff and flexible members and for defining the properties of the concentrated elements which represent the flexible members when analyzing the stiff components.
Technical Paper

Using Vehicle Dynamics Simulation as a Teaching Tool in Automotive Engineering Courses

2005-04-11
2005-01-1795
Some of the best teaching methods are laboratory courses in which students experience application of the principles being presented. Preparing young engineering students for a career in the automotive industry challenges us to provide comparable opportunities to explore the dynamic performance of motor vehicles in a controlled environment. Today we are fortunate to have accurate and easy-to-use software programs making it practical for students to simulate the performance of motor vehicles on “virtual” proving grounds. At the University of Michigan the CarSim® vehicle dynamics simulation program has been introduced as such a tool to augment the learning experience. The software is used in the Automotive Engineering course to supplement homework exercises analyzing acceleration, braking, aerodynamics, and cornering performance. This paper provides an overview of the use of simulation in this setting.
Technical Paper

Transient Spray Cone Angles in Pressure-Swirl Injector Sprays

2004-10-25
2004-01-2939
The transient cone angle of pressure swirl sprays from injectors intended for use in gasoline direct injection engines was measured from 2D Mie scattering images. A variety of injectors with varying nominal cone angle and flow rate were investigated. The general cone angle behavior was found to correlate well qualitatively with the measured fuel line pressure and was affected by the different injector specifications. Experimentally measured modulations in cone angle and injection pressure were forced on a comprehensive spray simulation to understand the sensitivity of pulsating injector boundary conditions on general spray structure. Ignoring the nozzle fluctuations led to a computed spray shape that inadequately replicated the experimental images; hence, demonstrating the importance of quantifying the injector boundary conditions when characterizing a spray using high-fidelity simulation tools.
Technical Paper

Support Vector Machine-Based Determination of Gasoline Direct Injected Engine Admissible Operating Envelope

2002-03-04
2002-01-1301
Support Vector Machines (SVMs) have been gaining popularity as classifiers with good generalization ability. In an attempt to study their applicability to typical automotive problems, this paper investigates the modeling of the operating envelope for a direct injection gasoline (GDI) engine. This envelope defines the admissible ranges for key engine operating variables so that specified conditions on engine roughness and misfire are satisfied. The SVM model of the operating envelope is subsequently used by the engine control strategy to set engine operating variables such as spark and injection timing to avoid excessive engine roughness and misfire. Findings and conclusions from this study related to generalization ability and complexity of the SVM classifier models are summarized.
Technical Paper

Strength and Balance Guided Posture Selection during a Battery Maintenance Task

2006-04-03
2006-01-0698
Posture selection during standing exertions is a complex process involving tradeoffs between muscle strength and balance. Bodyweight utilization reduces the amount of upper-body strength required to perform a high force push/pull exertion but shifts the center-of-gravity towards the limits of the functional stability region. Thus balance constraints limit the extent to which bodyweight can be used to generate push/pull forces. This paper examines a two-handed sagittal plane pulling exertion performed during a battery maintenance task on a member of the family of medium-sized tactical vehicles (FMTV). Percent capable strength predictions and functional balance capabilities were determined for various two-handed pulling postures using the University of Michigan's 3D Static Strength Prediction Program (3DSSPP). Through this simulation study, preferred postures that minimize joint torques while maintaining balance were identified.
Technical Paper

Static and Dynamic Testing of Self-Locking Bolts

1964-01-01
640786
This paper discusses the general principles governing the action of free spinning, self-locking bolts. The concept presented is that the bolt, and the parts it holds, acts as a spring, and it is shown that this leads logically to measuring the work done to remove a self-locking bolt as well as measuring its breakaway torque. Equipment for such tests is illustrated and typical test results are given. Finally, some remarks are made concerning the basic mechanisms by which vibratory motion loosens bolts.
Technical Paper

Slip Resistance Predictions for Various Metal Step Materials, Shoe Soles and Contaminant Conditions

1987-11-01
872288
The relationship of slip resistance (or coefficient of friction) to safe climbing system maneuvers on high profile vehicles has become an issue because of its possible connection to falls of drivers. To partially address this issue, coefficients of friction were measured for seven of the more popular fabricated metal step materials. Evaluated on these steps were four types of shoe materials (crepe, leather, ribbed-rubber, and oil-resistant-rubber) and three types of contaminant conditions (dry, wet-water, and diesel fuel). The final factor evaluated was the direction of sole force application. Results showed that COF varied primarily as a function of sole material and the presence of contaminants. Unexpectedly, few effects were attributible to the metal step materials. Numerous statistical interactions suggested that adequate levels of COF are more likely to be attained by targeting control on shoe soles and contaminants rather than the choice of a particular step material.
Technical Paper

Simulating Complex Manual Handling Motions Via Motion Modification: Performance Evaluation of Motion Modification Algorithm

2003-06-17
2003-01-2227
Simulation of human motions in virtual environments is an essential component of human CAD (Computer-aided Design) systems. In our earlier SAE papers, we introduced a novel motion simulation approach termed Memory-based Motion Simulation (MBMS). MBMS utilizes existing motion databases and predicts novel motions by modifying existing ‘root’ motions through the use of the motion modification algorithm. MBMS overcomes some limitations of existing motion simulation models, as 1) it simulates different types of motions on a single, unified framework, 2) it simulates motions based on alternative movement techniques, and 3) like real humans, it can learn new movement skills continually over time. The current study evaluates the prediction accuracy of MBMS to prove its utility as a predictive tool for computer-aided ergonomics. A total of 627 whole-body one-handed load transfer motions predicted by the algorithm are compared with actual human motions obtained in a motion capture experiment.
Technical Paper

SIMULATION OF A VEHICLE SUSPENSION WITH THE ADAMS COMPUTER PROGRAM

1977-02-01
770053
This paper describes a computer simulation of the front suspension of a 1973 Chevrolet Malibu using the ADAMS (Automatic Dynamic Analysis of Mechanical Systems) computer program. The model was proposed by the SAE Fatigue Design and Evaluation Committee for evaluating the speed, economy and accuracy of various computer simulations in predicting displacements and loads in a suspension system. A comparison between experimental and simulated results is given.
Technical Paper

Redesigning Workstations Utilizing Motion Modification Algorithm

2003-06-17
2003-01-2195
Workstation design is one of the most essential components of proactive ergonomics, and digital human models have gained increasing popularity in the analysis and design of current and future workstations (Chaffin 2001). Using digital human technology, it is possible to simulate interactions between humans and current or planned workstations, and conduct quantitative ergonomic analyses based on realistic human postures and motions. Motion capture has served as the primary means by which to acquire and visualize human motions in a digital environment. However, motion capture only provides motions for a specific person performing specific tasks. Albeit useful, at best this allows for the analysis of current or mocked-up workstations only. The ability to subsequently modify these motions is required to efficiently evaluate alternative design possibilities and thus improve design layouts.
Technical Paper

Rearview Mirror Reflectivity and the Tradeoff Between Forward and Rearward Seeing

1992-02-01
920404
In a laboratory study and in a mathematical modeling effort, we evaluated the effects of rearview mirror reflectivity on older and younger subjects' seeing ability under conditions designed to simulate night driving with headlamp glare present in the mirror. Rearview mirror reflectivity was varied while observers were required to detect both rearward stimuli seen through the mirror and forward stimuli seen directly. Lower reflectivity resulted in improved ability to see forward and reduced ability to see to the rear. The reduction in ability to see to the rear was much larger than the improvement in forward seeing. The results of the modeling and the laboratory study were in broad agreement, although there were some significant discrepancies. Although the present results cannot be used to make specific recommendations for rearview mirror reflectivity, they suggest that the reduction in rearward vision as reflectivity is lowered should be considered carefully.
Technical Paper

Plane-Strain Tension Tests of Al 2008-T4 Sheets

1993-03-01
930812
Rectangular aluminum sheets were stretched under in-plane plane-strain tension using a simple experimental setup. The samples can be stretched under these conditions until localized necking occurs at the centerline. The strain distributions and the loads were recorded at different strain levels. Good agreement was found between actual loads and those calculated from strain measurements assuming isotropic hardening with a high exponent yield criterion.
Technical Paper

Piston-Ring Assembly Friction Modeling by Similarity Analysis

1993-03-01
930794
A semi-empirical engine piston/ring assembly friction model based on the concept of the Stribeck diagram and similarity analysis is described. The model was constructed by forming non-dimensional parameters based on design and operating conditions. Friction data collected by the Fixed-Sleeve method described in [1]* at one condition, were used to correlate the coefficient of friction of the assembly and the other non-dimensional parameters. Then, using the instantaneous cylinder pressure as input together with measured and calculated design and operating parameters, reasonable assembly friction and fmep predictions were obtained for a variety of additional conditions, some of which could be compared with experimental values. Model inputs are component dimensions, ring tensions, piston skirt spring constant, piston skirt thermal expansion, engine temperatures, speed, load and oil viscosity.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Modifying Motions for Avoiding Obstacles

2001-06-26
2001-01-2112
Interference between physical objects in the workspace and the moving human body may cause serious problems, including errors in manual operation, physical damage and trauma from the collision, and increased biomechanical stresses due to movement reorganization for avoiding the obstacles. Therefore, a computer algorithm to detect possible collisions and simulate human motions to avoid obstacles will be an important tool for computer-aided ergonomics and optimization of system design in the early stage of a design process. In the present study, we present a method of modifying motions for obstacle avoidance when the object intrudes near the center of the planned motion. We take the motion modification approach, as we believe that for a certain class of obstacle avoidance problems, a person would modify a pre-planned motion that would result in a collision to a new one that is collision-free, as opposed to organizing a totally unique motion pattern.
Technical Paper

Modeling of Effort Perception in Lifting and Reaching Tasks

2001-06-26
2001-01-2120
Although biomechanics models can predict the stress on the musculoskeletal system, they cannot predict how the muscle load associated with exertion is perceived. The short-term goal of the present study was to model the perception of effort in lifting and reaching tasks. The long-term goal is to determine the correlation between objective and subjective measures of effort and use this information to predict fatigue or the risk of injury. Lifting and reaching tasks were performed in seated and standing situations. A cylindrical object and a box were moved with one hand and two hands, respectively, from a home location to shelves distributed in the space around the subject. The shoulder and torso effort required to perform these tasks were rated on a ten point visual analog scale.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

First and Second Law Analyses of a Naturally-Aspirated, Miller Cycle, SI Engine with Late Intake Valve Closure

1998-02-23
980889
A naturally-aspirated, Miller cycle, Spark-Ignition (SI) engine that controls output with variable intake valve closure is compared to a conventionally-throttled engine using computer simulation. Based on First and Second Law analyses, the two load control strategies are compared in detail through one thermodynamic cycle at light load conditions and over a wide range of loads at 2000 rpm. The Miller Cycle engine can use late intake valve closure (LIVC) to control indicated output down to 35% of the maximum, but requires supplemental throttling at lighter loads. The First Law analysis shows that the Miller cycle increases indicated thermal efficiency at light loads by as much as 6.3%, primarily due to reductions in pumping and compression work while heat transfer losses are comparable.
X