Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Neural Networks to Compensate Altitude Effects on the Air Flow Rate in Variable Valve Timing Engines

2005-04-11
2005-01-0066
An accurate air flow rate model is critical for high-quality air-fuel ratio control in Spark-Ignition engines using a Three-Way-Catalyst. Emerging Variable Valve Timing technology complicates cylinder air charge estimation by increasing the number of independent variables. In our previous study (SAE 2004-01-3054), an Artificial Neural Network (ANN) has been used successfully to represent the air flow rate as a function of four independent variables: intake camshaft position, exhaust camshaft position, engine speed and intake manifold pressure. However, in more general terms the air flow rate also depends on ambient temperature and pressure, the latter being largely a function of altitude. With arbitrary cam phasing combinations, the ambient pressure effects in particular can be very complex. In this study, we propose using a separate neural network to compensate the effects of altitude on the air flow rate.
Technical Paper

The Prospects of Using Alcohol-Based Fuels in Stratified-Charge Spark-Ignition Engines

2007-10-29
2007-01-4034
Near-term energy policy for ground transportation is likely to have a strong focus on both gains in efficiency as well as the use of alternate fuels; as both can reduce crude oil dependence and carbon loading on the environment. Stratified-charge spark-ignition direct-injection (SIDI) engines are capable of achieving significant gains in efficiency. In addition, these engines are likely to be run on alternative fuels. Specifically, lower alcohols such as ethanol and iso-butanol, which can be produced from renewable sources. SIDI engines, particularly the spray-guided variant, tend to be very sensitive to mixture preparation since fuel injection and ignition occur within a short time of each other. This close spacing is necessary to form a flammable mixture near the spark plug while maintaining an overall lean state in the combustion chamber. As a result, the physical properties of the fuel have a large effect on this process.
Technical Paper

Testing and Modeling of Frequency Drops in Resonant Bending Fatigue Tests of Notched Crankshaft Sections

2004-03-08
2004-01-1501
Resonant frequencies of a resonant bending system with notched crankshaft sections are obtained experimentally and numerically in order to investigate the effect of notch depth on the drop of the resonant frequency of the system. Notches with the depths ranging from 1 to 5 mm, machined by an EDM (Electrical-Discharging Machining) system, were introduced in crankshaft sections at the fillet between the main crank pin and crank cheek. The resonant frequencies of the resonant bending system with the crankshaft sections with various notch depths were first obtained from the experiments. Three-dimensional finite element models of the resonant bending system with the crankshafts sections with various notch depths are then generated. The resonant frequencies based on the finite element computations are in good agreement with those based on the experimental results.
Technical Paper

Strength and Balance Guided Posture Selection during a Battery Maintenance Task

2006-04-03
2006-01-0698
Posture selection during standing exertions is a complex process involving tradeoffs between muscle strength and balance. Bodyweight utilization reduces the amount of upper-body strength required to perform a high force push/pull exertion but shifts the center-of-gravity towards the limits of the functional stability region. Thus balance constraints limit the extent to which bodyweight can be used to generate push/pull forces. This paper examines a two-handed sagittal plane pulling exertion performed during a battery maintenance task on a member of the family of medium-sized tactical vehicles (FMTV). Percent capable strength predictions and functional balance capabilities were determined for various two-handed pulling postures using the University of Michigan's 3D Static Strength Prediction Program (3DSSPP). Through this simulation study, preferred postures that minimize joint torques while maintaining balance were identified.
Technical Paper

Servo Guns for Resistance Spot Welding

2000-03-06
2000-01-1289
Resistance spot welding (RWS) guns driven by servomotors instead of pneumatic cylinders are called servo guns. They bring many new features to RWS process. In this study, the influences of servo guns on RSW process are systematically investigated based on comparative experiments. In addition, the costs of servo guns are also analyzed. The long-term applications of servo guns will be cost effective due to their technical features and savings on pneumatic systems although the acquisition cost of servo guns is high. Therefore, servo gun is an excellent alternative RSW machine for sheet metal assembly.
Technical Paper

Reactor Studies for Exhaust Oxidation Rates

1973-02-01
730203
A laboratory test reactor has been used to determine the rates of oxidation of carbon monoxide (CO), hydrocarbons (HCs) as a class, and hydrogen (H2). The feed was supplied from the exhaust of a single-cylinder engine, with additions of H2 and CO in some runs. The test reactor was designed to be well mixed, and this was verified experimentally for mixing on macroscopic and microscopic scales. Wall effects were found to be unimportant. Kinetic data from 157 runs were correlated with global reaction rate expressions containing Arrhenius temperature dependence and power law concentration dependence. CO oxidation was found to be approximately 1/4 order in CO with an activation energy of 28,200 cal/g-mole. HC oxidation was found to be approximately 1/4 order in HC and 1/2 order in each of O2, CO, and NO with an activation energy of 29,800 cal/g-mole. H2 oxidation rates were not well correlated, but a zero-order rate with an activation energy of 52,000 cal/g-mole is reasonable.
Technical Paper

Piston-Ring Assembly Friction Modeling by Similarity Analysis

1993-03-01
930794
A semi-empirical engine piston/ring assembly friction model based on the concept of the Stribeck diagram and similarity analysis is described. The model was constructed by forming non-dimensional parameters based on design and operating conditions. Friction data collected by the Fixed-Sleeve method described in [1]* at one condition, were used to correlate the coefficient of friction of the assembly and the other non-dimensional parameters. Then, using the instantaneous cylinder pressure as input together with measured and calculated design and operating parameters, reasonable assembly friction and fmep predictions were obtained for a variety of additional conditions, some of which could be compared with experimental values. Model inputs are component dimensions, ring tensions, piston skirt spring constant, piston skirt thermal expansion, engine temperatures, speed, load and oil viscosity.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Model Update Under Uncertainty and Error Estimation in Shock Applications

2005-05-16
2005-01-2373
Numerical models are used for computing the shock response in many areas of engineering applications. Current analysis methods do not account for uncertainties in the model parameters. In addition, when numerical models are calibrated based on test data neither the uncertainty which is present in the test data nor the uncertainty in the model are taken into account. In this paper an approach for model update under uncertainty and error estimation for shock applications is presented. Fast running models are developed for the model update based on principal component analysis and surrogate models. Once the numerical model has been updated the fast running models are employed for performing probabilistic analyses and estimate the error in the numerical solution. The new developments are applied for computing the shock response of large scale structures, updating the numerical model based on test data, and estimating the error in the predictions.
Technical Paper

Model Based Analysis of Performance-Cost Tradeoffs for Engine Manifold Surface Finishing

2004-03-08
2004-01-1561
The link between manufacturing process and product performance is studied in order to construct analytical, quantifiable criteria for the introduction of new engine technologies and processes. Cost associated with a new process must be balanced against increases in engine performance and thus demand for the particular vehicle. In this work, the effect of the Abrasive Flow Machining (AFM) technique on surface roughness is characterized through measurements of specimens, and a predictive engine simulation is used to quantify performance gains due to the new surface finish. Subsequently, economic cost-benefit analysis is used to evaluate manufacturing decisions based on their impact on firm's profitability. A demonstration study examines the use of AFM for finishing the inner surfaces of intake manifolds for two engines, one installed in a compact car and the other in an SUV.
Technical Paper

Model Analysis of a Diesel Engine Cylinder Block using HEXA8 Finite Elements - Analysis and Experiment

1988-10-01
881853
Analytical and experimental investigations of a diesel engine cylinder block are performed. An attempt is made to reduce modeling and analysis costs in the design process of an engine. Traditionally, the engine has been modeled using either 8-node or 20-node solid elements for stress and thermal analyses and modeled using 4-node plate and shell elements for the dynamic analysis. In this paper, a simpler finite element modeling technique using only 8 node solid elements for both dynamic and static analyses is presented. Based on this integrated modeling technique of finite elements, eigenvalues are calculated and compared with the experimental data obtained from modal testing of an actual engine cylinder block.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

1999-03-01
1999-01-0973
A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
Technical Paper

Is Toluene a Suitable LIF Tracer for Fuel Film Measurements?

2004-03-08
2004-01-1355
Quantitative LIF measurements of liquid fuel films on the piston of direct-injected gasoline engines are difficult to achieve because generally these films are thin and the signal strength is low. Additionally, interference from scattered laser light or background signal can be substantial. The selection of a suitable fluorescence tracer and excitation wavelength plays an important role in the success of such measurements. We have investigated the possibility of using toluene as a tracer for fuel film measurements and compare it to the use of 3-pentanone. The fuel film dynamics in a motored engine at different engine speeds, temperatures and in-cylinder swirl levels is characterized and discussed.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Inhomogeneities in HCCI Combustion: An Imaging Study

2005-05-11
2005-01-2122
A four-valve-pentroof, direct-injection, optical engine fueled with n-heptane has been operated at four different steady-state HCCI operating conditions including 10% and 65% residuals, both at low and high swirl conditions. Both, planar toluene LIF and volume chemiluminescence show large scale inhomogeneity in the ensemble averaged images. The interpretation of the toluene-tracer LIF signals (when premixed with the fresh-air charge) as a marker for reaction homogeneity is discussed. A binarization scheme and a statistical analysis of the LIF images were applied to the per-cycle planar-LIF images revealing inhomogeneities both from cycle-to-cycle and within the regions of individual cycles that track with the average heat release rate. Comparison of these two homogeneity metrics between the four operating conditions reveals weak but discernable differences.
Technical Paper

Influence of Fuel Properties on Metering in Carburetors

1971-02-01
710207
This paper considers the influence of the properties of gasolines and testing fluids on metering by carburetors. Since the fuel metering is controlled by orifices, the effects of fuel properties on orifice flow are analyzed. The results of an orifice testing program are presented, using the Reynolds number as the primary correlation parameter. The influences of fuel type, fuel temperature, and orifice geometry on the discharge coefficient are discussed, and the effect of a given fuel property change is shown. Experimental values for the variations in fluid properties with fuel type and temperature are presented for commercial gasolines, carburetor testing fluids, and pure hydrocarbons. The variation of carbon-to-hydrogen ratio among gasolines is shown to cause a change in stoichiometry, which is the equivalent of an error in metering.
Technical Paper

Impact of Part Variation on In-Process Coordinate Measurements for Automotive Body Assemblies

1998-09-29
982273
Coordinate measurement gages dominate in the area of dimensional control and variation reduction of automotive body assembly processes. However, coordinate measurement gages do not have the capability to track certain measured features. This incapability introduces inherent measurement error created by part (feature) mislocation in constrained non-measured directions. This inherent measurement error weakens the methods used for process control and variation reduction. In this paper, a principle of measurement uncertainty is developed in order to estimate the measurement error caused by this deficiency. The developed principle describes measurement error, which is independent of any other error related to the mechanical or optical coordinate measurement machines (CMMs, OCMMs). Additionally, an error map determined by the measurement uncertainty principle is created for error compensation.
Technical Paper

Impact of Fluorescence Tracers on Combustion Performance in Optical Engine Experiments

2004-10-25
2004-01-2975
For applications of planar laser induced fluorescence (PLIF) to measure the fuel or equivalence ratio distributions in internal combustion (IC) engines it is typically assumed that the addition of a fluorescence tracer to a base fuel does not alter the combustion performance. We have investigated the impact on combustion performance through the addition of various amounts of 3-pentanone or toluene to iso-octane fuel. Correlations between equivalence ratio for a range of fuel/tracer mixtures and engine parameters, like peak pressure, location of peak pressure, indicated mean effective pressure (IMEP), and peak burn rate are discussed for data obtained in a spark-ignition direct-injection (SIDI) gasoline engine operated with near homogeneous charge. For typical tracer concentrations the impact on combustion performance is mostly negligible.
X