Refine Your Search

Topic

Search Results

Technical Paper

Variation in Autobody Adhesive Curing Process

1999-03-01
1999-01-0997
Adhesive joining is a common autobody subassembly technique especially for outer panels, where visible spot welding is objectionable. To accommodate mass production with the use of certain adhesives very high thermal gradient usually exists, which may result in panel dimensional distortion and variation. The temperature distribution over location and over time are monitored, and its impact to panel dimension is investigated. Experimental results on the effect of the distance between panel and induction coil on the panel temperature is obtained. The thermal induced shape distortion is simulated with a simplified FEA model. The approach to improvement of the induction curing process is discussed.
Technical Paper

Using Vehicle Dynamics Simulation as a Teaching Tool in Automotive Engineering Courses

2005-04-11
2005-01-1795
Some of the best teaching methods are laboratory courses in which students experience application of the principles being presented. Preparing young engineering students for a career in the automotive industry challenges us to provide comparable opportunities to explore the dynamic performance of motor vehicles in a controlled environment. Today we are fortunate to have accurate and easy-to-use software programs making it practical for students to simulate the performance of motor vehicles on “virtual” proving grounds. At the University of Michigan the CarSim® vehicle dynamics simulation program has been introduced as such a tool to augment the learning experience. The software is used in the Automotive Engineering course to supplement homework exercises analyzing acceleration, braking, aerodynamics, and cornering performance. This paper provides an overview of the use of simulation in this setting.
Technical Paper

Testing and Modeling of Frequency Drops in Resonant Bending Fatigue Tests of Notched Crankshaft Sections

2004-03-08
2004-01-1501
Resonant frequencies of a resonant bending system with notched crankshaft sections are obtained experimentally and numerically in order to investigate the effect of notch depth on the drop of the resonant frequency of the system. Notches with the depths ranging from 1 to 5 mm, machined by an EDM (Electrical-Discharging Machining) system, were introduced in crankshaft sections at the fillet between the main crank pin and crank cheek. The resonant frequencies of the resonant bending system with the crankshaft sections with various notch depths were first obtained from the experiments. Three-dimensional finite element models of the resonant bending system with the crankshafts sections with various notch depths are then generated. The resonant frequencies based on the finite element computations are in good agreement with those based on the experimental results.
Technical Paper

Slip Resistance Predictions for Various Metal Step Materials, Shoe Soles and Contaminant Conditions

1987-11-01
872288
The relationship of slip resistance (or coefficient of friction) to safe climbing system maneuvers on high profile vehicles has become an issue because of its possible connection to falls of drivers. To partially address this issue, coefficients of friction were measured for seven of the more popular fabricated metal step materials. Evaluated on these steps were four types of shoe materials (crepe, leather, ribbed-rubber, and oil-resistant-rubber) and three types of contaminant conditions (dry, wet-water, and diesel fuel). The final factor evaluated was the direction of sole force application. Results showed that COF varied primarily as a function of sole material and the presence of contaminants. Unexpectedly, few effects were attributible to the metal step materials. Numerous statistical interactions suggested that adequate levels of COF are more likely to be attained by targeting control on shoe soles and contaminants rather than the choice of a particular step material.
Technical Paper

Sensitivity Analysis of Complex Eigensolutions for Brake Noise

2003-05-05
2003-01-1626
When structures may have dynamic instability complex eigenvalue analysis is a useful tool to predict it. Although the accurate prediction itself is significant, it is also crucial to obtain sensitivity of unstable eigensolutions in order to eliminate instability efficiently. Since the mathematical relationship between stiffness matrix and design variables may seldom be found in reality, finite difference method has been typically used to approximate the sensitivity. The novel way to accurately calculate the sensitivity is developed without implementing finite difference method. This paper shows the advantages of analytical sensitivity analysis compared to other methods for choosing the most important components' eigenvalues. It also provides necessary amount of frequency shift for each chosen components' eigenvalue to eliminate unstable eigenvalues.
Technical Paper

SIMULATION OF A VEHICLE SUSPENSION WITH THE ADAMS COMPUTER PROGRAM

1977-02-01
770053
This paper describes a computer simulation of the front suspension of a 1973 Chevrolet Malibu using the ADAMS (Automatic Dynamic Analysis of Mechanical Systems) computer program. The model was proposed by the SAE Fatigue Design and Evaluation Committee for evaluating the speed, economy and accuracy of various computer simulations in predicting displacements and loads in a suspension system. A comparison between experimental and simulated results is given.
Technical Paper

Reactor Studies for Exhaust Oxidation Rates

1973-02-01
730203
A laboratory test reactor has been used to determine the rates of oxidation of carbon monoxide (CO), hydrocarbons (HCs) as a class, and hydrogen (H2). The feed was supplied from the exhaust of a single-cylinder engine, with additions of H2 and CO in some runs. The test reactor was designed to be well mixed, and this was verified experimentally for mixing on macroscopic and microscopic scales. Wall effects were found to be unimportant. Kinetic data from 157 runs were correlated with global reaction rate expressions containing Arrhenius temperature dependence and power law concentration dependence. CO oxidation was found to be approximately 1/4 order in CO with an activation energy of 28,200 cal/g-mole. HC oxidation was found to be approximately 1/4 order in HC and 1/2 order in each of O2, CO, and NO with an activation energy of 29,800 cal/g-mole. H2 oxidation rates were not well correlated, but a zero-order rate with an activation energy of 52,000 cal/g-mole is reasonable.
Technical Paper

Plane-Strain Tension Tests of Al 2008-T4 Sheets

1993-03-01
930812
Rectangular aluminum sheets were stretched under in-plane plane-strain tension using a simple experimental setup. The samples can be stretched under these conditions until localized necking occurs at the centerline. The strain distributions and the loads were recorded at different strain levels. Good agreement was found between actual loads and those calculated from strain measurements assuming isotropic hardening with a high exponent yield criterion.
Technical Paper

Modeling of Effort Perception in Lifting and Reaching Tasks

2001-06-26
2001-01-2120
Although biomechanics models can predict the stress on the musculoskeletal system, they cannot predict how the muscle load associated with exertion is perceived. The short-term goal of the present study was to model the perception of effort in lifting and reaching tasks. The long-term goal is to determine the correlation between objective and subjective measures of effort and use this information to predict fatigue or the risk of injury. Lifting and reaching tasks were performed in seated and standing situations. A cylindrical object and a box were moved with one hand and two hands, respectively, from a home location to shelves distributed in the space around the subject. The shoulder and torso effort required to perform these tasks were rated on a ten point visual analog scale.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Modeling and Testing of Spot Welds under Dynamic Impact Loading Conditions

2002-03-04
2002-01-0149
Failure behavior of spot welds is investigated under impact loading conditions. Three different impact speeds were selected to test both HSLA steel and mild steel specimens under combined opening and shear loading conditions. A test fixture was designed and used to obtain the failure loads of spot weld specimens of different thicknesses under a range of combined opening and shear loads with different impact speeds. Accelerometers were installed on the fixtures and the specimens for investigation of the inertia effects. Optical micrographs of the cross sections of failed spot welds were obtained to understand the failure processes in both HSLA steel and mild steel specimens under different combined impact loads. The experimental results indicate that the failure mechanisms of spot welds are very similar for both HSLA steel and mild steel specimens with the same sheet thickness. These micrographs show that the sheet thickness can affect the failure mechanisms.
Technical Paper

Model Based Analysis of Performance-Cost Tradeoffs for Engine Manifold Surface Finishing

2004-03-08
2004-01-1561
The link between manufacturing process and product performance is studied in order to construct analytical, quantifiable criteria for the introduction of new engine technologies and processes. Cost associated with a new process must be balanced against increases in engine performance and thus demand for the particular vehicle. In this work, the effect of the Abrasive Flow Machining (AFM) technique on surface roughness is characterized through measurements of specimens, and a predictive engine simulation is used to quantify performance gains due to the new surface finish. Subsequently, economic cost-benefit analysis is used to evaluate manufacturing decisions based on their impact on firm's profitability. A demonstration study examines the use of AFM for finishing the inner surfaces of intake manifolds for two engines, one installed in a compact car and the other in an SUV.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

1999-03-01
1999-01-0973
A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
Technical Paper

Investigation of Airbag-Induced Skin Abrasions

1992-11-01
922510
Static deployments of driver-side airbags into the legs of human subjects were used to investigate the effects of inflator capacity, internal airbag tethering, airbag fabric, and the distance from the module on airbag-induced skin abrasion. Abrasion mechanisms were described by measurements of airbag fabric velocity and target surface pressure. Airbag fabric kinematics resulting in three distinct abrasion patterns were identified. For all cases, abrasions were found to be caused primarily by high-velocity fabric impactrather than scraping associated with lateral fabric motion. Use of higher-capacity inflators increased abrasion severity, and untethered airbags produced more severe abrasions than tethered airbags at distances greater than the length of the tether. Abrasion severity decreased as the distance increased from 225 to 450 mm. Use of a finer-weave airbag fabric in place of a coarser-weave fabric did not decrease the severity of abrasion.
Technical Paper

Influence of Shear Loads on Crush of Honeycomb Materials

2002-03-04
2002-01-0683
We conduct static experiments to investigate the influence of shear stress on the crush behavior of honeycomb materials. The aluminum honeycomb materials selected in this investigation are orthotropic due to their manufacturing processes. A test fixture and honeycomb specimens are designed such that combined compressive and shear loads along the strongest material symmetry axis can be controlled and applied accurately. The experimental results indicate that both the peak and crush strengths under combined compressive and shear loads are lower than those under pure compressive loads. A yield function is suggested for honeycomb materials under the combined loads based on a phenomenological plasticity theory. The microscopic crush mechanism under the combined loads is also investigated. A microscopic crush model based on the experimental observations is developed. The crush model includes the rupture of aluminum cell walls so that the kinematic requirement can be satisfied.
Technical Paper

Honeycomb Specimens Under Combined Compressive and Shear Displacement Conditions

2005-04-11
2005-01-0360
The quasi-static crush behavior of aluminum 5052-H38 honeycomb specimens under non-proportional compression dominant combined loads is investigated by experiments. Compression dominant combined loads and pure compressive loads were applied in different sequences to induce non-proportional combined loads. The experimental results show that the normal crush and shear strengths in combined loading regions and the normal crush strengths in pure compressive loading regions of the non-proportional combined loads are quite consistent with the existing phenomenological yield criterion based on the experimental normal crush and shear strengths under proportional combined loads. The experimental results indicate that the sequence of loading paths for the non-proportional combined loads does not affect the crush strengths of honeycomb specimens.
Technical Paper

Fatigue Failures of Spot Friction Welds in Aluminum 6111-T4 Sheets Under Cyclic Loading Conditions

2006-04-03
2006-01-1207
Fatigue failures of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets under cyclic loading conditions are investigated in this paper. The paths of fatigue cracks near the spot friction welds are first discussed. A fatigue crack growth model based on the Paris law for crack propagation and the global and local stress intensity factors for kinked cracks is then adopted to predict the fatigue lives of these spot friction welds. The global stress intensity factors and the local stress intensity factors based on the recent published works for resistance spot welds in lap-shear specimens are used to estimate the local stress intensity factors for kinked cracks with experimentally determined kink angles. The results indicate that the fatigue life predictions based on the Paris law and the local stress intensity factors as functions of the kink length agree well with the experimental results.
Technical Paper

Fatigue Failure of Rollers in Crankshaft Fillet Rolling

2004-03-08
2004-01-1498
In this paper, the fatigue failure of the primary roller used in a crankshaft fillet rolling process is investigated by a failure analysis and a two-dimensional finite element analysis. The fillet rolling process is first discussed to introduce the important parameters that influence the fatigue life of the primary roller. The cross sections of failed primary rollers are then examined by an optical microscope and a Scanning Electron Microscope (SEM) to understand the microscopic characteristics of the fatigue failure process. A two-dimensional plane strain finite element analysis is employed to qualitatively investigate the influences of the contact geometry on the contact pressure distribution and the Mises stress distribution near the contact area. Fatigue parameters of the primary rollers are then estimated based on the Findley fatigue theory.
Technical Paper

Fatigue Behaviors of Aluminum 5754-O Spot Friction Welds in Lap-Shear Specimens

2008-04-14
2008-01-1139
Fatigue behaviors of aluminum 5754-O spot friction welds made by a concave tool in lap-shear specimens are investigated based on experimental observations and a fatigue life estimation model. Optical micrographs of the welds before and after failure under quasi-static and cyclic loading conditions are examined. The micrographs indicate that the failure modes of the 5754 spot friction welds under quasi-static and cyclic loading conditions are quite different. The dominant kinked fatigue cracks for the final failures of the welds under cyclic loading conditions are identified. Based on the experimental observations of the paths of the dominant kinked fatigue cracks, a fatigue life estimation model based on the stress intensity factor solutions for finite kinked cracks is adopted to estimate the fatigue lives of the welds.
Technical Paper

Failure of Laser Welds in Aluminum Sheets

2001-03-05
2001-01-0091
In this paper, the formability of AA5754 aluminum laser-welded blanks produced by Nd:YAG laser welding is investigated under biaxial straining conditions. The mechanical behavior of the laser-welded blanks is first examined by uniaxial tensile tests conducted with the weld line perpendicular to the tensile axis. Shear failure in the weld metal is observed in the experiments. Finite element simulations under generalized plane strain conditions are then conducted in order to further understand the effects of weld geometry and strength on the shear failure and formability of these welded blanks. The strain histories of the material elements in the weld metal obtained from finite element computations are finally used in a theoretical failure analysis based on the material imperfection approach to predict the failure strains for the laser-welded blanks under biaxial straining conditions.
X