Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Neural Networks to Compensate Altitude Effects on the Air Flow Rate in Variable Valve Timing Engines

2005-04-11
2005-01-0066
An accurate air flow rate model is critical for high-quality air-fuel ratio control in Spark-Ignition engines using a Three-Way-Catalyst. Emerging Variable Valve Timing technology complicates cylinder air charge estimation by increasing the number of independent variables. In our previous study (SAE 2004-01-3054), an Artificial Neural Network (ANN) has been used successfully to represent the air flow rate as a function of four independent variables: intake camshaft position, exhaust camshaft position, engine speed and intake manifold pressure. However, in more general terms the air flow rate also depends on ambient temperature and pressure, the latter being largely a function of altitude. With arbitrary cam phasing combinations, the ambient pressure effects in particular can be very complex. In this study, we propose using a separate neural network to compensate the effects of altitude on the air flow rate.
Technical Paper

Turbocharging the Chrysler 2.4L Engine

2003-03-03
2003-01-0410
A turbocharged version of the 2.4L engine has been developed by the Chrysler Group of DaimlerChrysler Corporation. This new engine is derived from the proven 2.4L 4-cylinder, with significant changes to achieve a durable, high performance package for the PT Cruiser vehicle. The package includes an integrated turbocharger / exhaust manifold, oil squirters for piston cooling, and numerous other upgrades to satisfy the demanding performance, emissions, and durability requirements unique to this powertrain. The purpose of this paper is to describe the mechanical changes to the base engine, the unique turbocharger configuration, and the new parts necessary to accommodate the higher output.
Technical Paper

Theoretical and Practical Aspects of Balancing a V-8 Engine Crankshaft

2005-05-16
2005-01-2454
Crankshafts must be balanced statically and dynamically before being put into service. However, without pistons and connecting-rod assemblies, a non-symmetric crankshaft is not in dynamic balance. Therefore, it is necessary to apply equivalent ring-weights on each of the crankpins of the crankshaft when balancing it on a dynamic balancing machine. The value of the ring weight must be accurately determined, otherwise all advantages that are derived from balancing would be of no avail. This paper analytically examines the theoretical background of this problem. Formulas for calculating the ring weights are derived and presented. These formulas are applicable to a generic class of crankshafts of V-type engines with piston pin offset. Also, practical consideration, such as the design and manufacturing of these ring weights, the method of testing, and correction is addressed.
Technical Paper

The Prospects of Using Alcohol-Based Fuels in Stratified-Charge Spark-Ignition Engines

2007-10-29
2007-01-4034
Near-term energy policy for ground transportation is likely to have a strong focus on both gains in efficiency as well as the use of alternate fuels; as both can reduce crude oil dependence and carbon loading on the environment. Stratified-charge spark-ignition direct-injection (SIDI) engines are capable of achieving significant gains in efficiency. In addition, these engines are likely to be run on alternative fuels. Specifically, lower alcohols such as ethanol and iso-butanol, which can be produced from renewable sources. SIDI engines, particularly the spray-guided variant, tend to be very sensitive to mixture preparation since fuel injection and ignition occur within a short time of each other. This close spacing is necessary to form a flammable mixture near the spark plug while maintaining an overall lean state in the combustion chamber. As a result, the physical properties of the fuel have a large effect on this process.
Technical Paper

The New DaimlerChrysler Corporation 5.7L HEMI® V8 Engine

2002-10-21
2002-01-2815
For the 2003 model year DaimlerChrysler Corporation (DCC) will introduce an all-new 5.7L V8 truck engine manufactured at the new Saltillo II Engine Plant (SEPII) in Saltillo, Mexico. The product will debut in the new RAM series of pick-up trucks and marks the return of the hemispherical combustion chamber architecture. This paper covers the engine design features, simulation methods, development, and manufacturing processes. Also reviewed are the project objectives and the organizational processes used to manage and deliver the program.
Technical Paper

The Measurement and Control of Cyclic Variations of Flow in a Piston Cylinder Assembly

2003-03-03
2003-01-1357
The existence of the cyclic variation of the flow inside an cylinder affects the performance of the engine. Developing methods to understand and control in-cylinder flow has been a goal of engine designers for nearly 100 years. In this paper, passive control of the intake flow of a 3.5-liter DaimlerChrysler engine was examined using a unique optical diagnostic technique: Molecular Tagging Velocimetry (MTV), which has been developed at Michigan State University. Probability density functions (PDFs) of the normalized circulation are calculated from instantaneous planar velocity measurements to quantify gas motion within a cylinder. Emphasis of this work is examination of methods that quantify the cyclic variability of the flow. In addition, the turbulent kinetic energy (TKE) of the flow on the tumble and swirl plane is calculated and compared to the PDF circulation results.
Technical Paper

Testing and Modeling of Frequency Drops in Resonant Bending Fatigue Tests of Notched Crankshaft Sections

2004-03-08
2004-01-1501
Resonant frequencies of a resonant bending system with notched crankshaft sections are obtained experimentally and numerically in order to investigate the effect of notch depth on the drop of the resonant frequency of the system. Notches with the depths ranging from 1 to 5 mm, machined by an EDM (Electrical-Discharging Machining) system, were introduced in crankshaft sections at the fillet between the main crank pin and crank cheek. The resonant frequencies of the resonant bending system with the crankshaft sections with various notch depths were first obtained from the experiments. Three-dimensional finite element models of the resonant bending system with the crankshafts sections with various notch depths are then generated. The resonant frequencies based on the finite element computations are in good agreement with those based on the experimental results.
Technical Paper

Tailor-Welded Aluminum Blanks for Liftgate Inner

2007-04-16
2007-01-0421
Tailor welded steel blanks have long been applied in stamping of automotive parts such as door inner, b-pillar, rail, sill inner and liftgate inner, etc. However, there are few known tailor welded aluminum blanks in production. Traditional laser welding equipment simply does not have the capability to weld aluminum since aluminum has much higher reflectivity than steel. Welding quality is another issue since aluminum is highly susceptible to pin holes and undercut which leads to deterioration in formability. In addition, high amount of springback for aluminum panels can result in dimension control problem during assembly. A tailor-welded aluminum blank can help reducing dimension variability by reducing the need for assembly. In this paper, application of friction stir and plasma arc welded blanks on a liftgate inner will be discussed.
Technical Paper

Springback Study on a Stamped Fender Outer

2003-03-03
2003-01-0685
Springback study on a Dodge Ram fender outer panel is detailed in this paper. A simple measurement fixture is designed for the panel, wherein non-contact laser scan technology is applied The measurement data are compared with the original CAD design surface and deviation contour maps are obtained. Consistency of measurement is studied at different sections among three samples. Details of FEA simulations are outlined. The comparison between measurement and simulation prediction is summarized. A method to describe the consistency of measurement and the accuracy of simulation prediction is proposed. The targets for measurement consistency and simulation accuracy are verified. A sensitivity analysis is also performed to investigate various simulation input parameters.
Technical Paper

Servo Guns for Resistance Spot Welding

2000-03-06
2000-01-1289
Resistance spot welding (RWS) guns driven by servomotors instead of pneumatic cylinders are called servo guns. They bring many new features to RWS process. In this study, the influences of servo guns on RSW process are systematically investigated based on comparative experiments. In addition, the costs of servo guns are also analyzed. The long-term applications of servo guns will be cost effective due to their technical features and savings on pneumatic systems although the acquisition cost of servo guns is high. Therefore, servo gun is an excellent alternative RSW machine for sheet metal assembly.
Technical Paper

Powertrain Mounting Design Principles to Achieve Optimum Vibration Isolation with Demonstration Tools

2003-05-05
2003-01-1476
The way a powertrain is mounted plays an important role in improving vehicle noise and vibration caused by the engine firing forces and can be an effective role in improving vehicle ride comfort. This paper describes the basic concepts in powertrain mounting and derives a new concept of evaluating powertrain mounting. It is well known in publications that a decoupled powertrain mounting system has better NVH characteristics[3][4][6]. But how to relate percentage of decouple to powertrain mounts transmitted forces, what “decoupled” really means, and how to evaluate how much it is decoupled are still ambiguous to many engineers. The traditional “one coordinate system” kinetic energy fraction (KEF) index can't give a clear picture of how much the engine mounting is decoupled and is often misleading. The new concept focuses on the excitations acting on the powertrain system.
Technical Paper

Piston-Ring Assembly Friction Modeling by Similarity Analysis

1993-03-01
930794
A semi-empirical engine piston/ring assembly friction model based on the concept of the Stribeck diagram and similarity analysis is described. The model was constructed by forming non-dimensional parameters based on design and operating conditions. Friction data collected by the Fixed-Sleeve method described in [1]* at one condition, were used to correlate the coefficient of friction of the assembly and the other non-dimensional parameters. Then, using the instantaneous cylinder pressure as input together with measured and calculated design and operating parameters, reasonable assembly friction and fmep predictions were obtained for a variety of additional conditions, some of which could be compared with experimental values. Model inputs are component dimensions, ring tensions, piston skirt spring constant, piston skirt thermal expansion, engine temperatures, speed, load and oil viscosity.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Multi-Mannequin Coordination and Communication in Digital Workcells

2003-06-17
2003-01-2197
It is commonly known that in an automotive manufacturing assembly line several workers perform either a common task or a number of different tasks simultaneously, and there is a need to represent such a multi-worker operation realistically in a digital environment. In the past years, most digital human modeling applications were limited only in a single worker case. This paper presents how to simulate multi-worker operations in a digital workcell. To establish an effective communication and interaction between the mannequins, some existing commercial software package has provided a digital input/output mechanism. The motion for each mannequin is often programmed independently, but can be interrupted anytime by the other digital human models or devices via a communication channel.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Model Based Analysis of Performance-Cost Tradeoffs for Engine Manifold Surface Finishing

2004-03-08
2004-01-1561
The link between manufacturing process and product performance is studied in order to construct analytical, quantifiable criteria for the introduction of new engine technologies and processes. Cost associated with a new process must be balanced against increases in engine performance and thus demand for the particular vehicle. In this work, the effect of the Abrasive Flow Machining (AFM) technique on surface roughness is characterized through measurements of specimens, and a predictive engine simulation is used to quantify performance gains due to the new surface finish. Subsequently, economic cost-benefit analysis is used to evaluate manufacturing decisions based on their impact on firm's profitability. A demonstration study examines the use of AFM for finishing the inner surfaces of intake manifolds for two engines, one installed in a compact car and the other in an SUV.
Technical Paper

Model Analysis of a Diesel Engine Cylinder Block using HEXA8 Finite Elements - Analysis and Experiment

1988-10-01
881853
Analytical and experimental investigations of a diesel engine cylinder block are performed. An attempt is made to reduce modeling and analysis costs in the design process of an engine. Traditionally, the engine has been modeled using either 8-node or 20-node solid elements for stress and thermal analyses and modeled using 4-node plate and shell elements for the dynamic analysis. In this paper, a simpler finite element modeling technique using only 8 node solid elements for both dynamic and static analyses is presented. Based on this integrated modeling technique of finite elements, eigenvalues are calculated and compared with the experimental data obtained from modal testing of an actual engine cylinder block.
Technical Paper

Measurements and Predictions of Steady-State and Transient Stress Distributions in a Diesel Engine Cylinder Head

1999-03-01
1999-01-0973
A combined experimental and analytical approach was followed in this work to study stress distributions and causes of failure in diesel cylinder heads under steady-state and transient operation. Experimental studies were conducted first to measure temperatures, heat fluxes and stresses under a series of steady-state operating conditions. Furthermore, by placing high temperature strain gages within the thermal penetration depth of the cylinder head, the effect of thermal shock loading under rapid transients was studied. A comparison of our steady-state and transient measurements suggests that the steady-state temperature gradients and the level of temperatures are the primary causes of thermal fatigue in cast-iron cylinder heads. Subsequently, a finite element analysis was conducted to predict the detailed steady-state temperature and stress distributions within the cylinder head. A comparison of the predicted steady-state temperatures and stresses compared well with our measurements.
Technical Paper

Measurement of Transfer Case Imbalance

2005-05-16
2005-01-2297
Different methodologies to test transfer case imbalance were investigated in this study. One method utilized traditional standard single plane and two plane methods to measure the imbalance of the transfer case when running it on a dynamic balance machine at steady RPM, while a second method utilized accelerometers and a laser vibrometer to measure vertical vibration on the transfer case when running it on a dynamic balance machine in 4 Hi open mode during a run up from 1000 to 4000 RPM with a 40 RPM difference between the input and output shaft speeds. A comparison of all of the measurements for repeatability and accuracy was done with the goal of determining an appropriate and efficient method that generates the most consistent results. By using the traditional method, the test results were not repeatable. This may be due to the internal complexity of transfer cases. With the second method, good correlation between the measurements was obtained.
X