Refine Your Search


Search Results

Journal Article

Thermodynamic Analysis of a Novel Combined Power and Cooling Cycle Driven by the Exhaust Heat Form a Diesel Engine

A novel combined power and cooling cycle based on the Organic Rankine Cycle (ORC) and the Compression Refrigeration Cycle (CRC) is proposed. The cycle can be driven by the exhaust heat from a diesel engine. In this combined cycle, ORC will translate the exhaust heat into power, and drive the compressor of CRC. The prime advantage of the combined cycle is that both the ORC and CRC are trans-critical cycles, and using CO₂ as working fluid. Natural, cheap, environmentally friendly, nontoxic and good heat transfer properties are some advantages of CO₂ as working fluid. In this paper, besides the basic combined cycle (ORC-CRC), another three novel cycles: ORC-CRC with an expander (ORC-CRCE), ORC with an internal heat exchanger as heat accumulator combined with CRC (ORCI-CRC), ORCI-CRCE, are analyzed and compared.
Technical Paper

Theoretical and Practical Mechanisms on Lowering Exhaust Emission Levels for Diverse Types of Spark Ignition Engines

The exhaust aftertreatment strategy is one of the most fundamental aspects of spark ignition engine technologies. For various types of engines (e.g., carburetor engine, PFI engine and GDI engine), measuring, purifying, modeling, and control strategies regarding the exhaust aftertreatment systems vary significantly. The primary goal of exhaust aftetreatment systems is to reduce the exhaust emission levels of NOx, HC and CO as well as to lower combustion soot. In general, there is a tradeoff among different engine performance aspects. The exhaust catalytic systems, such as the three way catalyst (TWC) and lean NOx trap (LNT) converters, can be applied together with the development of other engine technologies (e.g., variable valve timing, cold start). With respect to engine soot, some advanced diagnosing techniques are essential to obtain thorough investigation of exhaust emission mechanisms.
Technical Paper

The Optimum Design for Frictional Surface of Piston Ring of Engines

Based on the principle of conjugate curve surface and the theory of hydrodynamic lubrication, the similar spherical spiral surface, which has the best lubrication effect, was obtained in the paper. Experiment show, this kind of frictional surface is lower 15% at power loss, and it is higher 13% at service life than the traditional frictional surface of piston ring, (such as barrel, stepped, cuneiform, rectangle and so on).
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Technical Paper

Surface Functional Groups and Graphitization Degree of Soot in the Sooting History of Methane Premixed Flame

The evolution of surface functional groups (SFGs) and the graphitization degree of soot generated in premixed methane flames are studied and the correlation between them is discussed. Test soot samples were obtained from an optimized thermophoretic sampling system and probe sampling system. The SFGs of soot were determined by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) after removing the soluble impurities from the soot samples, while the graphitization degree of soot was characterized by Raman spectrum and electron energy loss spectroscopy (EELS). The results reveal that the number of aliphatic C-H groups and C=O groups shows an initial increase and then decrease in the sooting history. The large amount of aliphatic C-H groups and small amount of aromatic C-H groups in the early stage of the soot mass growth process indicate that aliphatic C-H groups make a major contribution to the early stage of soot mass growth.
Journal Article

Study on the Double Injection Strategy of Gasoline Partially Premixed Combustion under a Light-Duty Optical Engine

Gasoline partially premixed combustion (PPC) is a potential combustion concept to achieve high engine efficiency as well as low NOx and soot emissions. But the in-cylinder process of PPC is not well understood. In the present study, the double injection strategy of PPC was investigated on a light-duty optical engine. The fuel/air mixing and combustion process of PPC was evaluated by fuel-tracer planar laser-induced fluorescence (PLIF) and high-speed natural luminosity imaging technique, respectively. Combustion emission spectra of typical double injection case were analyzed. The primary reference fuel, PRF70 (70% iso-octane and 30% n-heptane by volume) was chosen as the lower reactivity fuel like gasoline. Double injection strategies of different first fuel injection timing and mass ratio of the two fuel injections were comparatively studied.
Technical Paper

Study on the Characteristics of Different Intake Port Structures in Scavenging and Combustion Processes on a Two-Stroke Poppet Valve Diesel Engine

Two-stroke engines have to face the problems of insufficient charge for short intake time and the loss of intake air caused by long valve overlap. In order to promote the power of a two-stroke poppet valve diesel engine, measures are taken to help optimize intake port structure. In this work, the scavenging and combustion processes of three common types of intake ports including horizontal intake port (HIP), combined swirl intake port (CSIP) and reversed tumble intake port (RTIP) were studied and their characteristics are summarized based on three-dimensional simulation. Results show that the RTIP has better performance in scavenging process for larger intake air trapped in the cylinder. Its scavenging efficiency reaches 84.7%, which is 1.7% higher than the HIP and the trapping ratio of the RTIP reaches 72.3% due to less short-circuiting loss, 11.2% higher than the HIP.
Technical Paper

Study on Methods of Coupling Numerical Simulation of Conjugate Heat Transfer and In-Cylinder Combustion Process in GDI Engine

Wall temperature in GDI engine is influenced by both water jacket and gas heat source. In turn, wall temperature affects evaporation and mixing characteristics of impingement spray as well as combustion process and emissions. Therefore, in order to accurately simulate combustion process, accurate wall temperature is essential, which can be obtained by conjugate heat transfer (CHT) and piston heat transfer (PHT) models based on mapping combustion results. This CHT model considers temporal interaction between solid parts and cooling water. This paper presents an integrated methodology to reliably predict in-cylinder combustion process and temperature field of a 2.0L GDI engine which includes engine head/block/gasket and water jacket components. A two-way coupling numerical procedure on the basis of this integrated methodology is as follows.
Technical Paper

Study on Hydrodynamic Characteristics of Fuel Droplet Impact on Oil Film

In order to understand the spray impinging the lubricant oil on the piston or cylinder wall in GDI engine, the Laser Induced Fluorescence (LIF) method was used to observe the phenomenon of the fuel droplets impact oil film and distinguish the fuel and oil during the impingement. The experimental results show that the hydrodynamic characteristics of impingement affected by the oil viscosity, droplets’ Weber number, oil film thickness. Crown formed after impingement. The morphology after impingement was categorized into: rings, stable crown, splash and prompt splash. Low oil film dynamic viscosity, high Weber number or thin oil film can facilitate splash. Splash droplets consist of fuel and oil, and the oil is the main component of splash droplets and crown. The empirical formula of critical We number (We) is fitted. High dimensionless oil film thickness or low oil film dynamic viscosity can increase the proportion of fuel in the crown.
Technical Paper

Study on Dynamic Characteristics of High-Speed Solenoid Injectors by Means of Contactless Measurement

In-cylinder direct-injected technology provides a flexible and accurate optimization for internal combustion engines to reduce emission and improve fuel efficiency. With increasingly stringent requirements for the emissions of nitrogen oxides (NOx) and CO2, the content of injections in an engine combustion cycle has reached 7 to 9 times in gasoline direct injection (GDI) and the diesel engine with high-pressure common rail (HPCR). Accurate control of both time and quantity of injection is critical for engine performance and emissions, while the dynamic response of injector spray characteristics is a key factor. In this paper, a test bench was built for monitoring the dynamic response of solenoid injectors with high-speed micro-photography and synchronous current collection system. Experimental studies on the dynamic response of GDI and HPCR solenoid injectors were carried out.
Technical Paper

Study on Combustion Information Feedback Based on the Combination of Virtual Model and Actual Angular Velocity Measurement

Combustion closed-loop control is now being studied intensively for engineering applications to improve fuel economy. Currently, combustion closed-loop feedback control is usually based on the cylinder pressure signal, which is the most direct and exact signal that reflects engine working process. Although there were some relatively cheap types of in-cylinder pressure sensors, cylinder pressure sensors have not been widely applied because of their high price now. Moreover, the combustion analysis based on cylinder pressure imposes high requirements on the information acquisition capability of the current ECU, such as high acquisition and analog-digital conversion frequency and so on. For developing a low price and feasible technology, a new engine information feedback method based on model calculation and crank angular velocity measurement was proposed. A simplified combustion model was operated in ECU for the real-time calculation of cylinder pressure and combustion parameters.
Journal Article

Simultaneous Measurement of Natural Flame Luminosity and Emission Spectra in a RCCI Engine under Different Fuel Stratification Degrees

Reactivity controlled compression ignition (RCCI) is a potential combustion strategy to achieve high engine efficiency with ultra-low NOx and soot emissions. Fuel stratification can be used to control the heat release rate of RCCI combustion. But the in-cylinder combustion process of the RCCI under different fuel stratification degrees has not been well understood, especially at a higher engine load. In this paper, simultaneous measurement of natural flame luminosity and emission spectra was carried out on a light-duty optical RCCI engine under different fuel stratification degrees. The engine was run at 1200 revolutions per minute under a load about 7 bar indicated mean effective pressure (IMEP). In order to form fuel stratification degrees from low to high, the common-rail injection timing of n-heptane was changed from -180° CA after top dead center (ATDC) to -10° CA ATDC, while the iso-octane delivered in the intake stroke was fixed.
Technical Paper

Selection of Swirl Ratio in Diesel Engines Based on Droplet Trajectory Analysis

Matching fuel injection and airflow motion is critical for the optimization of fuel-air mixing and combustion process in diesel engines. In this study, the effects of swirl flow on liquid droplet motion and the selection of swirl ratio, which are known as the major concern in organizing airflow motion, were investigated based on theoretical analysis of droplet trajectories. The evaporating droplets with various initial conditions are assumed to be transported in a solid-body-like swirl field, and their trajectories were derived based on force analysis. To evaluate fuel-air mixing quality, a new parameter with respect to fuel vapor distribution was proposed. Based on this methodology, the effects of swirl velocity, droplet size, as well as liquid-gas density ratio on droplet trajectory were discussed under diesel-engine-like boundary conditions.
Technical Paper

Research in the Effects of Intake Manifold Length and Chamber Shape on Performance for an Atkinson Cycle Engine

In order to improve the fuel consumption and expand the range of low fuel consumption area of a 1.5L Atkinson cycle PFI engine, the effect of the intake manifold length and chamber shape on the engine performance is investigated by setting up a GT-power (1-D) and an AVL-Fire (3-D) computational model which are calibrated with experimental data. After this the new engine was transformed to the test bench to do the calibration experiment. The results demonstrate that the intake manifold case_1 (the length is 300mm, side intake form) matched with a new designed chamber improves combustion in cylinder with a range 1.6∼7.4g/(kW•h) reduced in fuel consumption of speed that has been studied; the case_3 (the length is 100mm, intermediate intake form) matched with the new designed chamber with a range 3.86∼7g/(kW•h) reduced in fuel consumption of speed that has been studied. Both case_1 and case_3 expand the range of low fuel consumption area significantly.
Technical Paper

Pressure Drop and Soot Regeneration Characteristics through Hexagonal and Square Cell Diesel Particulate Filters

Although diesel engines have higher output torque, lower fuel consumption, and lower HC pollutant emissions, larger amounts of NOx and PM are emitted, compared with equivalent gasoline engines. The diesel particulate filters (DPF) have proved one of the most promising aftertreatment technologies due to the more stringent particulate matters (PM) regulations. In this study, the computational fluid dynamics (CFD) model of DPF was built by utilizing AVL-Fire software code. The main objective of this paper was to investigate the pressure drop and soot regeneration characteristics of hexagonal and conventional square cell DPFs with various inlet mass flow rates, inlet temperatures, cell densities, soot loads and ash loads. Different cell geometry shapes of DPF were evaluated under various ash distribution types.
Technical Paper

Pressure Drop and Soot Accumulation Characteristics through Diesel Particulate Filters Considering Various Soot and Ash Distribution Types

Although diesel engines offer higher thermal efficiency and lower fuel consumption, larger amounts of Particulate Matters (PM) are emitted in comparison with gasoline engines. The Diesel Particulate Filters (DPF) have proved one of the most promising technologies due to the “particle number” emissions regulations. In this study, the Computational Fluid Dynamics (CFD) multi-channel model of DPF was built properly by utilizing AVL-Fire software code to evaluate the pressure drop and soot accumulation characteristics of DPF. The main objective of this paper was to investigate the effects of soot (capacity and deposit forms) and ash (capacity and distribution factors) interaction on DPF pressure drop and soot accumulation, as well as the effects of DPF boundary conditions (inlet mass flow rate and inlet temperature) on pressure drop.
Technical Paper

Optical Experiments on Strong Knocking Combustion in Rapid Compression Machines with Different Fuels

Nowadays the strong knocking combustion involving destructive pressure wave or shock wave has become the main bottleneck for highly boosted engines when pursuing high thermal efficiency. However, its fundamental mechanism is still not fully understood. In this study, synchronization measurements through simultaneous pressure acquisition and high-speed direct photography were performed to comparatively investigate the strong knocking combustion of iso-octane and propane in a rapid compression machine with flat piston design. The pressure characteristics and visualized images of autoignition and reaction wave propagation were compared, and the correlations between thermodynamic trajectories and mixture reactivity progress were analyzed. The results show that iso-octane behaves a greater propensity to strong knocking combustion than propane at similar target pressures.
Technical Paper

OH, soot and temperature distributions of wall-impinging diesel fuel spray under different wall temperatures

OH, soot and temperature distributions of wall-impinging diesel fuel spray were investigated in a high-temperature high-pressure constant volume combustion vessel. The ambient temperature (Ta) was set as 773 K, and the wall temperature (Tw) was set as 523 K, 673 K, 773 K, respectively. Three different injection pressures (Pi) of 60 MPa, 100 MPa, 160 MPa, and the ambient pressures (Pa) of 4 MPa were applied. The OH spatial distributions of wall-impinging spray were measured by the method of OH chemiluminescence imaging. Two-color pyrometry was applied to evaluate the spatial distributions of KL factor and flame temperature of wall-impinging spray. The results reveal that, OH chemiluminescence is observed in the region near the impingement point firstly. The regions of high OH chemiluminescence intensity and high KL factor appear in the location near the wall surface along the whole combustion process.
Technical Paper

Numerical Investigations on Strong Knocking Combustion under Advanced Compression Ignition Conditions

Homogeneous charge compression ignition (HCCI) combined with high compression ratio is an effective way to improve engines’ thermal efficiency. However, the severe thermodynamic conditions at high load may induce knocking combustion thus damage the engine body. In this study, advanced compression ignition knocking characteristics were parametrically investigated through RCM experiments and simulation analysis. First, the knocking characteristics were optically investigated. The experimental results show that there even exists detonation when the knock occurs thus the combustion chamber is damaged. Considering both safety and costs, the effects of different initial conditions were numerically investigated and the results show that knocking characteristics is more related to initial pressure other than initial temperature. The initial pressure has a great influence on peak pressure and knock intensity while the initial temperature on knock onset.
Technical Paper

Numerical Investigation on Effects of Oxygen-Enriched Air and Intake Air Humidification on Combustion and Emission Characteristics of Marine Diesel Engine

In order to meet the increasingly stringent emissions restriction, it is indispensable to improve the combustion and emissions technology of high-speed marine diesel engines. Oxygen-enriched combustion and intake air humidification are effective ways to control pollution from diesel engines and improve combustion of diesel engines. In this study, the combustion and emission characteristics of supercharged intercooled marine diesel engine with humidity ratio and intake oxygen concentration were investigated by using multi-dimensional CFD model. The combustion model was established by AVL Fire code. The combination strategy of intake air humidification and oxygen-enriched combustion were optimized under partial load at 1350 rpm.