Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

The Effects of EGR and Injection Timing on the Engine Combustion and Emission Performances Fueled by Butanol-Diesel Blends

2012-04-01
2011-01-2473
The combustion and emission characteristics of a diesel engine running on butanol-diesel blends were investigated in this study. The blending ratio of n-butanol to diesel was varied from 0 to 40 vol% using an increment of 10 vol%, and each blend was tested on a 2.7 L V6 common rail direction injection diesel engine equipped with an EGR system. The test was carried out under two engine loads at a constant engine speed, using various combinations of EGR ratios and injection timings. Test results indicate that n-butanol addition to engine fuel is able to substantially decrease soot emission from raw exhaust gas, while the change in NOx emissions varies depending on the n-butanol content and engine operating conditions. Increasing EGR ratio and retarding injection timing are effective approaches to reduce NOx emissions from combustion of n-butanol-diesel blends.
Technical Paper

The Application and Optimization of EGR-LNT Synergetic Control System on Lean-burn Gasoline Engine

2015-04-14
2015-01-1036
Ensuring lower emissions and better economy (fuel economy and after-treatment economy) simultaneously is the pursuit of future engines. An EGR-LNT synergetic control system was applied to a modified lean-burn CA3GA2 gasoline engine. Results showed that the synergetic control system can achieve a better NOx reduction than sole EGR and sole LNT within a proper range of upstream EGR rate and without the penalty in fuel consumption. It also has the potential to save costly noble metals in LNT, but excessive or deficient upstream EGR would make the synergetic control system inefficiency. In order to guarantee the objectivity of the effect of EGR-LNT synergetic control system on NOx reduction, another modified lean-burn CA4GA5 gasoline engine was additionally tested.
Technical Paper

Study on Dynamic Characteristics of High-Speed Solenoid Injectors by Means of Contactless Measurement

2017-10-08
2017-01-2313
In-cylinder direct-injected technology provides a flexible and accurate optimization for internal combustion engines to reduce emission and improve fuel efficiency. With increasingly stringent requirements for the emissions of nitrogen oxides (NOx) and CO2, the content of injections in an engine combustion cycle has reached 7 to 9 times in gasoline direct injection (GDI) and the diesel engine with high-pressure common rail (HPCR). Accurate control of both time and quantity of injection is critical for engine performance and emissions, while the dynamic response of injector spray characteristics is a key factor. In this paper, a test bench was built for monitoring the dynamic response of solenoid injectors with high-speed micro-photography and synchronous current collection system. Experimental studies on the dynamic response of GDI and HPCR solenoid injectors were carried out.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Numerical Investigation of the Potential of Late Intake Valve Closing (LIVC) Coupled with Double Diesel Direct-Injection Strategy for Meeting High Fuel Efficiency with Ultra-Low Emissions in a Heavy-Duty Reactivity Controlled Compression Ignition (RCCI) Engine at High Load

2019-04-02
2019-01-1166
The potential of diesel/gasoline RCCI combustion coupled with late intake valve closing (LIVC) and double direct injection of diesel for meeting high fuel efficiency with ultra-low emissions was investigated in this study. The study was aiming at high load operation in a heavy-duty diesel engine. Based on the reactivity stratification of RCCI combustion, the employment of double injection of diesel fuel provided concentration stratification of the high-reactivity fuel, which is to further realize effective control of the combustion process. Meanwhile, late intake valve closing (LIVC) strategy is introduced to control the maximum in-cylinder pressure and nitrogen oxides (NOx) emissions.
Technical Paper

Numerical Analysis of Scavenging Process in a Large Marine Two-Stroke Diesel Engine

2017-10-08
2017-01-2201
For uniflow scavenged two-stroke marine diesel engines, the main function of scavenging process is to replace the burned gas with fresh charge. The end state of scavenging process is integral to the subsequent compression and combustion, thereby affecting the engine’s fuel economy, power output and emissions. In this paper, a complete working cycle of a large marine diesel engine was simulated by using the 3D-CFD software CONVERGE. The model was validated by mesh sensitivity test and experiment data. Based on this calibrated model, the influences of swirl ratio and exhaust valve closing (EVC) timing on the scavenging process were investigated. The parameters evaluating the performance of scavenging process were introduced. The results show that, by adjusting the swirl orientation angle(SOA) from SOA=10° to SOA=30°, different swirl ratios are generated and have obvious differences in flow characteristics and scavenging performance.
Technical Paper

Investigation on Cylinder Bore Deformation under Static Condition Based on Fourier Decomposition

2017-03-28
2017-01-0366
Due to the mechanical forces under static conditions, the engine cylinders cross section will not be a round circle any more once they are installed. The deformation of an engine cylinder causes increasing lubricating oil consumption and abnormal wear, resulting in worse fuel economy and emissions. However, prediction of deformation on a liner has not been made because of the complication of conditions and structure. In this study, a V6-type engine body model was built and meshed with Hypermesh suit software. Then, cylinder deformation under static condition has been simulated and analyzed. First of all, experimental work was done to verify the engine model. Basically, few parameters like pre-tightened force, structure and distribution of bolts have been investigated to figure out how the cylinder bore deformation behaves via finite element analysis. Also, a simple Matlab program was developed to process the data.
Technical Paper

Fuel Saving Potential of Different Turbo-Compounding Systems Under Steady and Driving Cycles

2015-04-14
2015-01-0878
The performance of three different electric turbo-compounding systems under both steady and driving cycle condition is investigated in this paper. Three configurations studied in this paper are serial turbo-compounding, parallel turbo-compounding and electric assisted turbo-compounding. The electric power, global gain of the whole system (engine and power turbine) under steady operating condition is firstly studied. Then investigation under three different driving cycles is conducted. Items including fuel consumption, engine operating point distribution and transient response performance are analyzed among which the second item is done based on statistic method combined with the results obtained under steady operating conditions. Study under steady condition indicates that electric assisted turbo-compounding system is the best choice compared with the other two systems. The performance of serial turbo-compounding is load oriented while parallel configuration is speed oriented.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

Effects of EGR on PN Emissions under Operating Parameters from DISI Engines

2017-10-08
2017-01-2399
Particulate matter emissions have become a concern for the development of DISI engines. EGR has been extensively demonstrated as a beneficial technology to migrate knock performance, improve fuel economy and reduce NOX emissions. Recently, the effect of EGR on particulate matter emissions is attracting increased attention. This work investigates the effects of EGR on PN emissions with the variations of engine operating parameters and aims to understand the role of EGR in PN emissions for DISI engines. A 1.8liter turbocharged engine with cooled EGR is used for this study. The engine is operated at steady-state conditions with EGR under various operating parameters including injection timing, excess air ratio, and spark timing to characterize the particle number emissions. The results indicates that there is a high sensitivity of PN emissions to EGR with the variations of those parameters.
Technical Paper

Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes

2016-10-17
2016-01-2185
In this work, both the ‘SCR-only’ and ‘EGR+SCR’ technical routes are compared and evaluated after the optimizations of both injection strategy and turbocharging system over the World Harmonized Stationary Cycle (WHSC) in a heavy duty diesel engine. The exhaust emissions and fuel economy performance of different turbocharging systems, including wastegate turbocharger (WGT), variable geometry turbocharger (VGT), two-stage fixed geometry turbocharger (WGT+FGT) and two-stage variable geometry turbocharger (VGT+FGT), are investigated over a wide EGR range. The NOx reduction methods and EGR introduction strategies for different turbocharger systems are proposed to improve the fuel economy. The requirement on turbocharging system and their potential to meet future stringent NOx and soot emission regulations are also discussed in this paper.
Technical Paper

An Assessment of the Impact of Exhaust Turbine Redesign, for Narrow VGT Operating Range, on the Performance of Diesel Engines with Assisted Turbocharger

2019-04-02
2019-01-0326
Electrically assisted turbochargers are a promising technology for improving boost response of turbocharged engines. These systems include a turbocharger shaft mounted electric motor/generator. In the assist mode, electrical energy is applied to the turbocharger shaft via the motor function, while in the regenerative mode energy can be extracted from the shaft via the generator function, hence these systems are also referred to as regenerative electrically assisted turbochargers (REAT). REAT allows simultaneous improvement of boost response and fuel economy of boosted engines. This is achieved by optimally scheduling the electrical assist and regeneration actions. REAT also allows the exhaust turbine to operate within a narrow range of optimal vane positions relative to the unassisted variable geometry turbocharger (VGT). The ability to operate within a narrow range of VGT vane positions allows an opportunity for a more optimal turbine design for a REAT system.
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

2011-04-12
2011-01-1382
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper

A Comparative Study on the Fuel Economy Improvement of a Natural Gas SI Engine at the Lean Burn and the Stoichiometric Operation both with EGR under the Premise of Meeting EU6 Emission Legislation

2015-09-01
2015-01-1958
In order to further study the effects of air and EGR dilution on the fuel economy improvement of natural gas engines under the premise of meeting EU6 legislation, a comparison between stoichiometric operation with EGR and lean burn operation with and without EGR has been conducted at 1600rpm 50% and 75% load. The conversion efficiencies of the catalysts for both NOx and CH4 emissions are assumed at 90% for lean burn operation. Experiment results indicate that under the condition of meeting both NOx and CH4 predetermined engine-out emissions limits for EU6 legislation, lean operation with a small fraction of EGR dilution enables more advanced combustion phasing compared to pure lean operation, which results in much better fuel economy, thus further improvement compared to stoichiometric operation is achieved.
X