Refine Your Search

Topic

Search Results

Technical Paper

Visualization Study of PM Trapping and Reaction Phenomena in Micro-structural Pores through Cross Section of DPF Wall

2007-04-16
2007-01-0917
Trapping of diesel particulates and phenomena of chemical reaction in regeneration were investigated by visualization through the cross-sectional area of a diesel-particulate-filter wall, using a digital-microscope with a high focusing depth. Herein, SiC-DPF walls were polished up to make a uniform height and to create a mirror-like surface on each SiC-particle-grain. At the beginning of the trapping process, it was observed that large particulates were trapped once in the small pores inside the wall, and then, since the flow-pattern was changed drastically, the trapped particulates were pushed out and blown off again, and finally, trapped in a region further downstream. As time passed, image analysis disclosed that since fine particulates were deposited around the SiC-particle-grain surface, the flow-channels became increasingly narrow.
Technical Paper

The Effect of Exhaust Gas Recirculation on Performance and Emission of Ethanol Fumigated Diesel Engine

2017-11-05
2017-32-0101
Primary energy source such as fossil fuel keep decreasing due to various kind of usage. According to less amount of the fossil fuel, human seeks for an alternative fuel source such as alcohol. Alcohol like ethanol can be produced easily from strarchy plant. But using alcohol as blended fuel with diesel fuel doesn't work well because alcohol has low cetane number, lack of lubricity and very low miscibility with diesel fuel. To overcome this, fumigation system or port fuel injection of alcohol seems interesting. Although it requires more complicate system but it can compensate the miscibility issue and alcohol can be used in higher dose to give more energy. Diesel engine produces a lot of emission such as NOx and some other carbon content emission like HC, CO and soot due to they run in lean condition as their characteristic. Modern diesel engines are now coupled with exhaust gas recirculation system to help reduce in main emission like NOx.
Technical Paper

Simultaneous Measurements of Temperatures of Flame and Wall Surface in a Combustion Chamber of Diesel Engine

2011-08-30
2011-01-2047
In order to investigate the combustion phenomena in a combustion chamber of the diesel engine at transient operations, the simultaneous measurements of temperatures of flame and wall surface in a combustion chamber were conducted. The new technique for simultaneous measurements of flame temperature and wall surface was developed. Laser-Induced phosphorescence was used for the measurement of wall surface temperature which was coupled with the flame temperature measurement by a two-color pyrometry. The NOx and soot emissions were also measured simultaneously in transient operations. The relation between the temporal changes of emissions and temperatures of flame and surface wall are discussed. The results show that the temporal change of NOx emission during transient operation is similar to that of the average gas temperature in a chamber. On the other hand, the temporal change of soot emission is similar to neither that of flame temperature nor that of average gas temperature.
Journal Article

Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method

2009-11-02
2009-01-2742
A simultaneous multi-composition analyzing (SMCA) resonance enhanced multi-photon ionization (REMPI) system was used to investigate gasoline engine exhaust. Observed peaks for exhaust were smaller mass numbers than those from diesel exhaust. However, large species up to three ring aromatics were observed suggesting that soot precursor forms even in the gasoline engine. At low catalyst temperature condition, the reduction efficiencies of a three-way catalyst were higher for higher mass numbers. This result indicates that the larger species accumulate in the catalyst or elsewhere due to their lower vapor pressures. To evaluate the emission of low volatility species, the accumulation should be taken into account. In the hot mode, reduction efficiencies for aromatic species of three-way catalyst were almost 99.5% however, they fall to 70% in the cold start condition.
Technical Paper

Simultaneous 2-D Imaging of OH Radicals and Soot in a Diesel Flame by Laser Sheet Techniques

1996-02-01
960834
The OH and soot in an unsteady flame, which was achieved in a rapid compression machine, were visualized simultaneously by the laser-induced fluorescence and laser-induced scattering techniques. The fuel mixture consisting of 90% paraffin hydrocarbon (reference fuel) and 10% polypropylene-glycol was used to reduce the optical attenuation caused by dense soot cloud. The simultaneous images of the fluorescence from OH and scattering from soot show that the soot and OH exist separately from each other in the leading portion of the spray flame, and the OH is formed earlier than the soot in the near field region of spray flame.
Technical Paper

Quantitative Measurement of Fuel Vapor Concentration in an Unsteady Evaporating Spray via a 2-D Mie-Scattering Imaging Technique

1993-10-01
932653
The cross-sectional distribution of fuel vapor concentration in an evaporating spray was measured quantitatively by a new scattering imaging technique, silicone particle scattering imaging method, which was proposed in a previous paper[1]. When fuel containing silicone oil injected into a nitrogen environment at high temperature, the volatile base fuel in the droplets vaporized rapidly, leaving behind small droplets of silicone oil suspended in the vapor-gas mixture. The silicone oil droplets were illuminated by a thin laser sheet, and the scattered light was imaged by a CCD camera. The cross-sectional distribution of vapor concentration was estimated from the scattering image of the silicone oil droplets by Mie scattering theory. The results demonstrated clearly the inhomogeneity of the fuel vapor concentration. The distribution of vapor concentration was discontinuous, and islands of rich mixture with a scale of several millimeters existed in the center region of the spray.
Technical Paper

Pyrene-LIF Thermometry of the Early Soot Formation Region in a Diesel Spray Flame

2005-09-11
2005-24-006
In order to investigate early soot formation process in diesel combustion, spectral analysis and optical thermometry of early soot formation region in a transient spray flame under diesel-like conditions (Pg2.8 MPa, Tg620-820K) was attempted via laser-induced fluorescence (LIF) from pyrene (C16H10) doped in the fuel. Pyrene is known to exhibit a temperature\-dependent variation of LIF spectrum; the ratio of S2/S1 fluorescence yields, from the lowest excited singlet state S1 and the second excited singlet state S2, depends on temperature. In the present study, pyrene was doped (1%wt) in a model diesel fuel (0-solvent) and the variation of LIF spectra from the pyrene in the spray flame in a rapid compression machine were examined at different ambient temperatures, ambient oxygen concentrations, measurement positions and timings after start of fuel injection.
Technical Paper

Physical Characterization of Biodiesel Particle Emission by Electron Microscopy

2013-10-15
2013-32-9150
Nanostructures of diesel and biodiesel engine particulate matters (PMs) were investigated by using a Transmission Electron Microscopy (TEM). The average single particle sizes of biodiesel and diesel PMs are approximately 30-40 nm and 50-60 nm, respectively. Image processing process was used to estimate each carbon platelet length by using TEM image. The average carbon platelet length of biodiesel and diesel PMs are in the range of 0.1-7.0 nm. Moreover, carbon atoms per cubic volume of PMs are approximately 500-900. The result shows that engine load and fuel property are strongly impact on the size of single particle and carbon atom density of particle. This is one of interesting behaviors need to be investigated for better understanding. The results of this research would be used as basic information for design and develop removing process of PM emitted from engine combustion which using in diesel and biodiesel fuels.
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
Technical Paper

NOx Reduction with the HC-SCR System over Cu/Zeolite Based Catalysts

2015-09-01
2015-01-2012
Diesel engine is one the effective solutions for reducing CO2 and recognized as a leading candidate for mitigating global warming. To comply with increasingly stringent emission standards, all diesel engines require some sort of NOx control systems such as selective catalytic reduction (SCR) systems. The SCR catalyst for reducing NOx from diesel engines is classified into two groups, urea-SCR and HC-SCR catalyst, respectively. Although the urea-SCR catalyst is widely recognized as promising de-NOx technology in respect to the NOx conversion efficiency, it have some outstanding issues such as ammonia slip, urea injection, storage space, freezing and some infrastructures for supplying urea water solutions. In an attempt to overcome the inherent shortcoming of existing urea-SCR catalyst, hydrocarbons have been considered as alternative reducing agents for SCR process, instead of NH3.
Technical Paper

Mixing Enhancement in Diesel-Like Flames via Flame Impingement on Turbulence-Generating Plates

1992-10-01
922210
Soot concentration is very high in the periphery near the head of an unsteady spray flame which is achieved in a quiescent atmosphere in a rapid compression machine. To reduce soot concentration in this region, it was intended to improve fuel-air mixing by letting the flame impinge on a turbulence-generating plate. Two types of turbulence-generating plates, one donut-type, the other cross-type, were tested. Soot concentration in the flame was imaged using the laser shadow technique. The effect of injection pressure on soot reduction by the flame impingement was also investigated. The overall soot concentration is reduced significantly in the case when the flame impinges on the cross-type turbulence-generating plate at 50 mm (333 nozzle diameters) from the nozzle exit. The flame impingement on the cross-type turbulence-generating plate at 333 nozzle diameters makes soot reduction little dependent on injection pressures.
Technical Paper

Measurement of Flame Temperature Distribution in a D.I. Diesel Engine by Means of Image Analysis of Nega-Color Photographs

1981-02-01
810183
A new technique was proposed for measuring instantaneous distributions of flame temperature and KL factor of luminous flames. Here the principle of the two-color method was used to calculate flame temperature and KL factor from the two-color densities of a film image taken on a nega-color film. We applied this technique to the high speed nega-color photographs of flames in a D. I. diesel engine operated with varying swirl ratios, and discussed the measured results of instantaneous distributions of flame temperature and KL factors.
Technical Paper

Measurement of Excitation-Emission Matrix of Shock-heated PAHs using a Multi-wavelength Laser Source

2003-05-19
2003-01-1785
Measurements of Excitation-Emission Matrix (EEM) of shock-heated vapors of polycyclic aromatic hydrocarbons (PAHs) at high temperature (750-1500K) and high pressure (0.3-1.3MPa) conditions were conducted using a multi-wavelength excitation laser in order to demonstrate the potential of the single-measurement EEM fluorometry for investigation of soot precursors. Argon-diluted vapors of naphthalene and pyrene, as PAH model compounds, were heated in an optically accessible shock tube. The PAH vapors were excited by a coherent multi-wavelength “rainbow” laser light generated by converting the 4th harmonic (266nm) of a pulsed Nd:YAG laser using a Raman cell frequency converter filled with high-pressure (2MPa) methane-hydrogen mixture.
Journal Article

Laser-Induced Phosphorescence Thermography of Combustion Chamber Wall of Diesel Engine

2008-04-14
2008-01-1069
In order to investigate the mechanism of heat transfer on the chamber wall of direct-injection diesel engines, 2-D temperature imaging and heat flux measurement in the flame impinging region on the chamber wall were conducted using laser-induced phosphorescence technique. The temperature of the chamber wall surface was measured by the calibrated intensity variation of the 355nm-excited laser-induced phosphorescence from an electrophoretically deposited thin layer of La2O2S:Eu phosphor on a quartz glass plate placed in a rapid compression and expansion machine (RCEM). Instantaneous 2-D images of wall temperature at different timings after start of injection and time-resolved (10kHz) heat flux near the flame impinging region were obtained for combusting and non-combusting diesel sprays with impinging distance of 23.4mm at different injection pressures (80 and 120MPa).
Technical Paper

Investigation of Effects of Ignition Improvers on Ignition Delay Time of Ethanol Combustion with Rapid Compression and Expansion Machine

2012-04-16
2012-01-0854
This work investigates the effects of ignition improvers on the ignition and combustion characteristics of hydrous ethanol with 5% by weight water and 1% by weight Lauric acid (Eh95) under simulated diesel engine conditions using the rapid compression and expansion machine (RCEM). Results indicate that hydrous ethanol with commercial additive (ED95) and hydrous ethanol with 5% by weight glycerol ethoxylate in hydrous ethanol exhibit a near identical rate-of-pressure-rise and heat release rate. Ignition delay of hydrous ethanol with 5% by weight glycerol ethoxylate is shorter, but hydrous ethanol with 1% by weight glycerol ethoxylate has longer ignition delay time and different combustion characteristics compared with hydrous ethanol with commercial additive (ED95). Hydrous ethanol with 1% by weight glycerol ethoxylate and hydrous ethanol with 5% by weight glycerol ethoxylate are considered suitable fuels for high compression-ratio diesel engines.
Technical Paper

Impact of TiO2 and V2O5 on Sintered Mullite Porous Microstructure and Soot Oxidation Kinetics Using SEM and TGA

2019-03-25
2019-01-1407
The exhaust emissions from diesel combustion are the sources of particulate matter emitted to the atmosphere, which are components of air pollution that implicated in human health such as lung cancer. At present the diesel particulate filter can remove PM from the exhaust gas before emitted to the atmosphere. This research is investigating morphology and structure of acicular mullite to develop the fabrication process filter in order to study particulate matters trapping and oxidation mechanisms. This paper used two main substances to study the structure of diesel particulate filter (DPFs); Aluminum oxide (Al2O3) and Silicon dioxide (SiO2). These are mainly in the conventional DPFs. The variable substances are Titanium dioxide (TiO2) and Vanadium oxide (V2O5), which added to investigate and produce the acicular mullite DPFs structure. The mullite samples were sintered at 1300 oC with holding time of 1 h.
Technical Paper

Impact of Biodiesel on Small CI Engine Combustion Behavior and Particle Emission Characteristic

2017-11-05
2017-32-0094
Diesel engines are high thermal efficiency because of high compression ratio but produce high concentration of particulate matter (PM) because of direct injection fuel diffusion combustion. PM must be removed from the exhaust gas to protect human health. This research describes biodiesel engine performance, efficiency and combustion behavior using combustion pressure analyzer. It was clearly observed that PM emitted from CI engines can be reduced by using renewable bio-oxygenated fuels. The morphology and nanostructure of fossil fuel and biofuel PMs were investigated by using a Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The morphology of biodiesel and diesel doesn’t have much different in the viewpoint of particulate matter trapping using DPF micro surface pores. The agglomerated ultrafine particles and primary nanoparticles sizes of diesel and biodiesel engine’s PM are approximately 50-500 nm and 20-50 nm, respectively.
Technical Paper

Ignition, Combustion and Emissions in a DI Diesel Engine Equipped with a Micro-Hole Nozzle

1996-02-01
960321
In an attempt to achieve lean combustion in Diesel engines which has a potential for simultaneous reduction in no and soot, the authors developed a micro-hole nozzle which has orifices with a diameter as small as 0.06 mm. Combustion tests were carried out using a rapid compression-expansion machine which has a DI Diesel type combustion chamber equipped with the micro-hole nozzle. A comparison with the result of a conventional nozzle experiment revealed that the ignition delay was shortened by 30 %, and in spite of that, both peaks of initial premixed combustion and diffusion combustion increased significantly. The combustion in the case of the micro-hole nozzle experiment was accompanied with a decrease in soot emission, whereas an increase in NO emission.
Technical Paper

High Combustion Temperature for the Reduction of Particulate in Diesel Engines

1988-02-01
880423
Experiments on the effects of temperature T and equivalence ratio ϕ on soot formation at high pressures up to 5 MPa were conducted. The soot formation region is mapped on ϕ-T diagram using the results obtained in the experiments and the published data. NO formation region is also determined by the Zeldovich equations and is plotted on the same diagram. The time histories of ϕ and T of the flame in a DI diesel engine which was obtained by a gas sampling study, are plotted on the ϕ-T diagram to form a trajectory. Discussion of the trajectory in relation to both soot and NO formation region gives suggestion of a possibility of high temperature - rich mixture combustion to reduce particulate formation in diesel engines.
Technical Paper

Heat Transfer Analysis in a Diesel Engine Based on a Heat Flux Measurement Using a Rapid Compression and Expansion Machine

2017-11-05
2017-32-0115
To investigate the heat transfer phenomena inside the combustion chamber of a diesel engine, a correlation for the heat transfer coefficient in a combustion chamber of a diesel engine was investigated based on heat flux measured by the authors in the previous study(8) using the rapid compression and expansion machine. In the correlation defined in the present study, thermodynamically estimated two-zone temperatures in the burned zone and the unburned zone are applied. The characteristic velocity given in the correlation is related to the speed of spray flame impinging on the wall during the fuel injection period. After the fuel injection period, the velocity term of the Woschni’s equation is applied. It was shown that the proposed correlation well expresses heat transfer phenomena in diesel engines.
X