Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Efficient Direct Yaw Moment Control during Acceleration and Deceleration while Turning (First Report)

2016-04-05
2016-01-1674
The research described in this paper aimed to study the cornering resistance and dissipation power on the tire contact patch, and to develop an efficient direct yaw moment control (DYC) during acceleration and deceleration while turning. A previously reported method [1], which formulates the cornering resistance in steady-state cornering, was extended to so-called quasi steady-state cornering that includes acceleration and deceleration while turning. Simulations revealed that the direct yaw moment reduces the dissipation power due to the load shift between the front and rear wheels. In addition, the optimum direct yaw moment cancels out the understeer augmented by acceleration. In contrast, anti-direct yaw moment optimizes the dissipation power during decelerating to maximize kinetic energy recovery. The optimization method proved that the optimum direct yaw moment can be achieved by equalizing the slip vectors of all the wheels.
Technical Paper

Efficient Direct Yaw Moment Control during Acceleration and Deceleration While Turning (Second Report)

2016-04-05
2016-01-1677
Electric vehicles (EVs) are attracting attention due to growing awareness of environmental issues such as fossil fuel depletion and global warming. In particular, a wide range of research has examined how direct yaw moment controls (DYCs) can enhance the handling performance of EVs equipped with multiple in-wheel motors (IWMs) or the like. Recently, this research has focused on reducing energy consumption through driving force distribution control. The first report proposed a method to minimize energy consumption through an efficient DYC for extending the cruising range of a vehicle installed with four IWMs, and described the vehicle behavior with this control. Since motors allow high design flexibility, EVs can be developed with a variety of drive systems. For this reason, various driving force distribution control methods can be considered based on the adopted system.
X