Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Gasoline Quality on Throttle Response of Engines During Warm-Up

An investigation of throttle response of engines during warm-up was conducted using various gasolines. Test data were obtained from an engine on a test bench at intermediate temperature around 20∼ 30 °C. By using the engine test bench data, correlation coefficients between engine response time and gasoline characteristics were calculated. The result shows that the middle range of distillation temperature is an important factor in gasoline characteristics for warm-up driveability of fuel injected engines. It also shows that 50% distillation temperature can be used as one indication of warm-up driveability. This indication is effective only for hydrocarbon type gasolines. In the case of MTBE blended gasoline, the distillation temperature becomes low when MTBE is blended to gasoline, but throttle response was not improved. It is also found that the effect of gasoline distillation on throttle response is enhanced by intake valve deposits.
Technical Paper

Development of Computer Aided Engineering for Piston Design

Computer Aided Engineering system for automotive piston design was developed which can predict total piston performance in a short time at the planning stage of piston design. Many previous studies attempted to calculate piston performance accurately with experimental data and their main purpose was not to create a tool for piston design. The purpose of this CAE system is to provide a tool for a designer to predict total piston performance easily and rapidly without experimental data. This system has following two characteristics. Firstly, new finite element methods were developed which can predict temperature distribution without experimental data, thermal skirt expansion for a strutted piston and skirt-to-bore contact pressure under engine operating conditions. The predicted result are accurate enough to predict piston performance at the planning stage of piston design.
Technical Paper

Analysis of Oil Consumption Mechanism by Measuring Oil Ring Radial Movement

Oil consumption mechanism was analyzed by measuring the radial movement of the upper side rail in a three piece type oil ring, together with the piston movement. Ultra-miniature inductive displacement sensors were designed to measure the oil ring movement and fitted on the upper side rail with a part of the 3rd land cut out. The clearance between the side rail and the cylinder wall was measured under various operating conditions. The results showed that the radial movement of the oil ring was affected by the piston movement, which results in the possibility of degrading the oil control ability for the cylinder wall because the oil ring temporarily moves with the piston. Accordingly, the designs to improve the piston movement or to be less affected by the movement proved to be an important factor for the reduction of the oil consumption.