Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Study of Braking Characteristics of New Manual Braking System (1st Report)

2024-04-09
2024-01-2497
The purpose of this study is to propose braking characteristics that are easy for drivers to handle in a system in which braking and driving operations are performed by hand. Genetic algorithm optimization of braking characteristics showed that the best deceleration tracking was achieved by an FG diagram with a logarithmic function shape. In contrast, the slope of the optimal FG diagram tended to decrease as the driver's proportional gain increased.
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

2012-04-16
2012-01-0443
Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Journal Article

Research on Ultra-High Viscosity Index Engine Oil: Part 2 - Influence of Engine Oil Evaporation Characteristics on Oil Consumption of Internal Combustion Engines

2022-03-29
2022-01-0524
The reduction of CO2 emissions is one of the most important challenges for the automotive industry to contribute to address global warming. Reducing friction of internal combustion engines (ICEs) is one effective countermeasure to realize this objective. The improvement of engine oil can contribute to reduce fuel consumption by reducing friction between engine parts. Electrification of ICE powertrains increases the overall efficiency of powertrains and reduces the average engine oil temperature during vehicle operation, due to intermittent engine operation. An effective way of reducing engine friction is to lower the viscosity of the engine oil in the low to medium temperature range. This can be accomplished while maintaining viscosity at high temperatures by reducing the base oil viscosity and increasing the viscosity modifier (VM) content to raise the viscosity index (so-called “flat viscosity” concept).
Technical Paper

Research of Fuel Components to Enhance Engine Thermal Efficiency Part I: Concepts for Fuel Molecule Candidate

2019-12-19
2019-01-2255
As part of efforts to address climate change and improve energy security, researchers have improved the thermal efficiency of engines by expanding the lean combustion limit. To further expand the lean combustion limit, the authors focused not only on engine technology but the chemical reactivity of various fuel molecules. Furan and anisole were among the fuel molecules selected, based on the idea that promising candidates should enhance the flame propagation speed and have good knocking resistance. Engine testing showed that the lean limit can be expanded by using fuels with the right molecular structures, resulting in higher thermal efficiency.
Technical Paper

Objective Driveability Development of Motorcycles with AVL-DRIVE

2014-11-11
2014-32-0020
Originally developed for the automotive market, a fully automatic real-time measurement tool AVL-DRIVE is commercially available for analyzing and scoring vehicle drive quality, also known as “Driveability”. This system from AVL uses its own transducers, calibrated to the sensitivity and response of the human body to measure the forces felt by the driver, such as acceleration, shock, surging, vibration, noise, etc. Simultaneously, the vehicle operating conditions are measured, (throttle grip angle, engine speed, gear, vehicle speed, temperature, etc.). Because the software is pre-programmed with the scores from a multitude of different vehicles in each vehicle class via neural networks and fuzzy logic formula, a quality score with reference to similar competitor vehicles is instantly given. This tool is already successfully implemented in the market for years to investigate such driveability parameters for passenger cars.
Journal Article

Improvement of Ride Comfort by Unsprung Negative Skyhook Damper Control Using In-Wheel Motors

2016-04-05
2016-01-1678
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
Technical Paper

IGBT Gate Control Methods to Reduce Electrical Power Losses of Hybrid Vehicles

2016-04-05
2016-01-1224
Reducing the loss of the power control unit (PCU) in a hybrid vehicle (HV) is an important part of improving HV fuel efficiency. Furthermore the loss of power devices (insulated gate bipolar transistors (IGBTs) and diodes) used in the PCU must be reduced since this amounts to approximately 20% of the total electrical loss in an HV. One of the issues for reducing loss is the trade-off relationship with reducing voltage surge. To restrict voltage surge, it is necessary to slow down the switching speed of the IGBT. In contrast, the loss reduction requires the high speed switching. One widely known method to improve this trade-off relationship is to increase the gate voltage in two stages. However, accurate and high-speed operation of the IGBT gate control circuit is difficult to accomplish. This research clarifies a better condition of the two-stage control and designed a circuit that improves this trade-off relationship by increasing the speed of feedback control.
Technical Paper

Highly Integrated Fuel Cell Analysis Infrastructure for Advanced Research Topics

2017-03-28
2017-01-1180
The limitation of global warming to less than 2 °C till the end of the century is regarded as the main challenge of our time. In order to meet COP21 objectives, a clear transition from carbon-based energy sources towards renewable and carbon-free energy carriers is mandatory. Polymer electrolyte membrane fuel cells (PEMFC) allow an energy-efficient, resource-efficient and emission-free conversion of regenerative produced hydrogen. For these reasons fuel cell technologies emerge in stationary, mobile and logistic applications with acceptable cruising ranges as well as short refueling times. In order to perform applied research in the area of PEMFC systems, a highly integrated fuel cell analysis infrastructure for systems up to 150 kW electric power was developed and established within a cooperative research project by HyCentA Research GmbH and AVL List GmbH in Graz, Austria. A novel open testing facility with hardware in the loop (HiL) capability is presented.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Technical Paper

Experimental Study of Lateral Acceleration Feedback Control with Steer-by-Wire System

2010-04-12
2010-01-0996
Steer-by-wire is a system that can independently control steering-wheel torque and vehicle-wheel steering angle. The object of this research was to realize a vehicle that can be driven according to driver's intention in any situation, such as in a crosswind, and rutted road surface. Using a steer-by-wire system, disturbance torque from the vehicle-wheels is not transmitted to the driver, signifying that the steering-wheel angle always indicates driver intention. Also, since unexpected feelings by active steering controls are reduced, feedback controls for the target vehicle behavior are easily realized. This research achieved good characteristics from steering-wheel angle to lateral acceleration by studying response characteristics using a vehicle equipped to measure lateral acceleration feedback.
Technical Paper

Evaluation of Fully Sustainable Low Carbon Gasoline Fuels Meeting Japanese E10 Regular and Premium Octane Specifications

2023-09-29
2023-32-0165
Reducing the carbon emissions associated with ICE- containing vehicles is a complimentary step towards carbon neutrality alongside the introduction of vehicles using newer energy vectors. In this study, the authors investigated emissions and efficiency impact of fully renewable E10-grade gasoline fuels blended with sustainable components at both 90 RON and 96 RON in comparison with reference regular E0 and premium certification gasolines across a range of ICE vehicle applications. Both renewable fuels were blended to the Japan JIS K2022 2012 E10 specification. The study shows very low carbon gasolines are technically feasible and potentially have an important role to play in decarbonizing both new advanced technology ICE vehicles and, critically, the existing ICE vehicle parc in the transition towards a zero emissions future.
Technical Paper

End-Correction in Open Ducts: An Experimental Study

2022-06-15
2022-01-0987
This paper presents the results of an investigation on the influence of a duct’s geometry and shape on its acoustic length, which differs from its physical length by a factor referred to as end-correction. In addition to traditional parameters such as length and diameter, the author has investigated the effect of additional geometry features which are less commonly addressed in the technical literature, such as a diameter contraction or a bent section along the duct. The relative microphone position with respect to the pipe orifice and to the ground surface of the measurement environment has been investigated, showing negligible impact on the measurement results. The sound wave propagation within a pipe featuring a diameter contraction has then been analysed, showing the relationship between the pipe contraction shape and location and the pipe acoustic length.
Technical Paper

Efficient Direct Yaw Moment Control during Acceleration and Deceleration while Turning (First Report)

2016-04-05
2016-01-1674
The research described in this paper aimed to study the cornering resistance and dissipation power on the tire contact patch, and to develop an efficient direct yaw moment control (DYC) during acceleration and deceleration while turning. A previously reported method [1], which formulates the cornering resistance in steady-state cornering, was extended to so-called quasi steady-state cornering that includes acceleration and deceleration while turning. Simulations revealed that the direct yaw moment reduces the dissipation power due to the load shift between the front and rear wheels. In addition, the optimum direct yaw moment cancels out the understeer augmented by acceleration. In contrast, anti-direct yaw moment optimizes the dissipation power during decelerating to maximize kinetic energy recovery. The optimization method proved that the optimum direct yaw moment can be achieved by equalizing the slip vectors of all the wheels.
Technical Paper

Efficient Direct Yaw Moment Control during Acceleration and Deceleration While Turning (Second Report)

2016-04-05
2016-01-1677
Electric vehicles (EVs) are attracting attention due to growing awareness of environmental issues such as fossil fuel depletion and global warming. In particular, a wide range of research has examined how direct yaw moment controls (DYCs) can enhance the handling performance of EVs equipped with multiple in-wheel motors (IWMs) or the like. Recently, this research has focused on reducing energy consumption through driving force distribution control. The first report proposed a method to minimize energy consumption through an efficient DYC for extending the cruising range of a vehicle installed with four IWMs, and described the vehicle behavior with this control. Since motors allow high design flexibility, EVs can be developed with a variety of drive systems. For this reason, various driving force distribution control methods can be considered based on the adopted system.
Technical Paper

Development of a New High Orientation Paint System to Achieve Outstanding Real Metallic Designs

2020-04-14
2020-01-0899
Silver metallic colors with thin and smooth aluminum flake pigments have been introduced for luxury brand OEMs. Regarding the paint formulation for these types of colors, low non-volatile(NV) and high aluminum flake pigment contents are known as technology for high metallic appearance designs. However, there are two technical concerns. First is mottling which is caused by uneven distribution of the aluminum flake pigments in paint film and second is poor film property due to high aluminum pigment concentration in paint film. Therefore, current paint systems have limitation of paint design. As a countermeasure for those two concerns, we had investigated cellulose nanofiber (CNF) dispersion liquid as both the coating binder and rheology control agent in a new type of waterborne paint system. CNF is an effective rheology control agent because it has strong hydrogen bonds with other fiber surfaces in waterborne paint.
Technical Paper

Development of a New Breath Alcohol Detector without Mouthpiece to Prevent Drunk Driving

2009-04-20
2009-01-0638
Breath alcohol interlock systems are used in Europe and the U.S. for drunk driving offenders, and a certain effect has been revealed in the prevention of drunk driving. Nevertheless, problems remain to be solved with commercialized detectors, i.e., a person taking the breath alcohol test must strongly expire to the alcohol detector through a mouthpiece for every test, more over the determination of the breath alcohol concentration requires more than 5 seconds. The goal of this research is to develop a device that functions suitable and unobtrusive enough as the interlock system. For this purpose, a new alcohol detector, which does not require a long and hard blowing to the detector through a mouthpiece, has been investigated. In this paper, as a tool available on board, a contact free alcohol detector for the prevention of drunk driving has been developed.
Technical Paper

Development of Gasoline Injector Cleaner for Port Fuel Injection and Direct Injection

2016-04-05
2016-01-0830
Port fuel injection (PFI) injector and direct fuel injection (DI) injector clogging from deposits caused by poor fuel quality, is a concern in emerging countries. Then DI injector deposits are sometimes cleaned by injector cleaners in such situation. However deposit cleaners for PFI injectors have not been developed, because of the lack of research of PFI injector deposits. Through chemical analysis, this study showed them to be water-soluble deposits. Subsequently success was achieved in developing a new gasoline injector cleaner applicable to injector deposits in both types of injectors, through optimization of a surface active agent.
Technical Paper

Development of Combustion Behavior Analysis Techniques in the Ultra High Engine Speed Range

2007-04-16
2007-01-0643
In order to clarify the combustion behavior in the ultra high engine speed range, a new technique has been developed. This technique is composed of ionization current detection and flame observation, and is highly heat-resistant, vibration-resistant, and has a quick response. From analyzing the flame front propagation in the high-speed research engine, it was found that the flame propagated throughout the entire cylinder over almost the same crank angle period irrespective of engine speed introduction.
X