Refine Your Search

Topic

Author

Search Results

Viewing 1 to 20 of 20
Technical Paper

Toyota Newly Developed 2VZ-FE Type Engine

1988-11-01
881775
Newly developed 2VZ-FE engine for CAMRY is a 2.5-liter water cooled and V-type 6-cylinder engine exported from TOYOTA for the first time. This engine has the TOYOTA original 4-valve DOHC system. That is, exhaust camshafts driven by intake camshafts using scissors gears. By its compact configuration with the gear driven camshafts, this V-type 6-cylinder engine is mounted on a front-wheel-drive vehicle which originally had an in-line 4-cylinder engine. By increasing IVZ-FE engine displacement (for domestic), compact pentroof-type combustion chambers, optimum air-fuel ratio and ignition timing by TCCS (TOYOTA Computer Controlled System) and other technologies, a high performance 153HP/5600rpm and a large torque 155ft·lbs/4400rpm have been achieved with a low fuel consumption.
Technical Paper

The Effect of Gasoline Metallic Additives on Low Speed Pre-Ignition

2018-04-03
2018-01-0936
Methylcyclopentadienyl manganese tricarbonyl (MMT) is used as an octane-enhancing metallic additive for unleaded gasoline which can prevent engine knock by proactive reaction with the hydrocarbon free radicals before starting the auto-ignition of hydrocarbons. However it has been pointed out that MMT causes automotive catalysts clogging and spark plug severely fouling. Therefore, many countries have fuel standards that prohibit or limit the usage of MMT. Nevertheless, some countries still use MMT as there are no restrictions imposed by fuel standards. As mentioned in several papers, metallic additives of engine oil such as calcium cause an abnormal combustion phenomenon called low-speed pre-ignition (LSPI) in turbocharged spark ignition engines. In contrast, the effect of metallic additives of gasoline such as MMT on LSPI has not been studied.
Technical Paper

Study of Mileage-Related Formaldehyde Emission from Methanol Fueled Vehicles

1990-02-01
900705
In order to determine the main factors causing the mileage-related increase in formaldehyde emission from methanol-fueled vehicles, mileage was accumulated on three types of vehicle, each of which had a different air-fuel calibration system. From exhaust emission data obtained during and after the mileage accumulation, it was found that lean burn operation resulted in by far the highest formaldehyde emission increase. An investigation into the reason for the rise in engine-out formaldehyde emission revealed that deposits in the combustion chamber emanating from the lubricating oil promotes formaldehyde formation. Furthermore it was learnt that an increase in engine-out NOx emissions promotes partial oxidation of unburned methanol in the catalyst, leading to a significant increase in catalyst-out formaldehyde emission.
Technical Paper

Research on the Measures for Improving Cycle-to-Cycle Variations under High Tumble Combustion

2016-04-05
2016-01-0694
Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society. An effective way for accomplishing this aim is to enhance the engine thermal efficiency. Measures to mitigate knocking and reduce engine cooling heat loss are important aspects of enhancing the engine thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid and conventional vehicles in recent years. Toyota has been introducing these technologies as ESTEC (Economy with Superior Thermal Efficient Combustion). Improving cycle-to-cycle variations in combustion, in addition to fast combustion is essential for achieving high engine thermal efficiency.
Journal Article

Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines

2016-04-05
2016-01-0661
The reduction of the heat loss from the in-cylinder gas to the combustion chamber wall is one of the key technologies for improving the thermal efficiency of internal combustion engines. This paper describes an experimental verification of the “temperature swing” insulation concept, whereby the surface temperature of the combustion chamber wall follows that of the transient gas. First, we focus on the development of “temperature swing” insulation materials and structures with the thermo-physical properties of low thermal conductivity and low volumetric heat capacity. Heat flux measurements for the developed insulation coating show that a new insulation material formed from silica-reinforced porous anodized aluminum (SiRPA) offers both heat-rejecting properties and reliability in an internal combustion engine. Furthermore, a laser-induced phosphorescence technique was used to verify the temporal changes in the surface temperature of the developed insulation coating.
Journal Article

On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels

2019-12-19
2019-01-2150
The knock-suppression effectiveness of exhaust-gas recirculation (EGR) can vary between implementations that take EGR gases after the three-way catalyst and those that use pre-catalyst EGR gases. A main difference between pre-and post-catalyst EGR gases is the level of trace species like NO, UHC, CO and H2. To quantify the role of NO, this experiment-based study employs NO-seeding in the intake tract for select combinations of fuel types and compression ratios, using simulated post-catalyst EGR gases as the diluent. The four investigated gasoline fuels share a common RON of 98, but vary in octane sensitivity and composition. To enable probing effects of near-zero NO levels, a skip-firing operating strategy is developed whereby the residual gases, which contain trace species like NO, are purged from the combustion chamber. Overall, the effects of NO-seeding on knock are consistent with the differences in knock limits for preand post-catalyst EGR gases.
Technical Paper

Multipoint Spark Ignition for Lean Combustion

1985-10-01
852092
Effects of multipoint spark ignition on combustion duration, fuel consumption and lean misfire limit are discussed in this paper. A plate, which consists of 12 spark gaps in each cylinder, and a new CD ignition system have been developed for accomplishing the multipoint spark ignition. This plate was installed between cylinder block and head in a 4 cylinder engine. Compared with a single gap, the results of 12 gaps showed a reduced combustion duration by about 50%, a 5% decrease in fuel consumption and an extended lean misfire limit by about 3 air-fuel ratio numbers. Furthermore, the multipoint spark ignition on both sides of the combustion chamber was more effective than only on one side. With this system, HC emission can be reduced as well. The results of this study showed that, compared to those obtained with swirl, this multipoint spark ignition was more effective on improving fuel consumption.
Journal Article

Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines

2012-09-10
2012-01-1615
Abnormal combustion referred to as Low Speed Pre-Ignition (LSPI) may restrict low speed torque improvements in turbocharged Direct Injection (DI) - Spark Ignition (SI) Engines. Recent investigations have reported that the auto-ignition of an engine oil droplet from the piston crevice in the combustion chamber may cause unexpected and random LSPI. This study shows that engine oil formulations have significant effects on LSPI. We found that the spontaneous ignition temperature of engine oil, as determined using High-Pressure Differential Scanning Calorimetry (HP-DSC) correlates with LSPI frequency in a prototype turbocharged DI-SI engine. Based on these findings, we believe that the oxidation reaction of the oil is very important factor to the LSPI. Our test data, using a prototype engine, shows both preventative and contributory effects of base oil and metal-based engine oil additives.
Technical Paper

Improvement of DI Diesel Engine System by Utilizing GTL Fuels Characteristics

2009-06-15
2009-01-1933
Gas To Liquid (GTL) fuels synthesized from natural gas are known as clean fuels. Therefore, GTL fuels have been expected to be a promising option that can reduce the NOx and PM emissions from diesel engines and contribute to the energy security. In this study, in order to clarify the emission reduction potentials, the improvement of DI diesel engine and aftertreatment systems were investigated by utilizing GTL fuels characteristics. To achieve a further reduction of both NOx and PM emissions, the combustion chamber, injection pattern and EGR calibration were modified. From the results of tests, the engine out NOx emissions were reduced to the Euro 6 regulation level and in parallel the expected deteriorations of HC emission and fuel consumption were suppressed because of the characteristics of high cetane number and zero poly-aromatics hydrocarbons. Additionally, an aftertreatment system was optimized to GTL fuel in order to improve NOx conversion efficiency.
Journal Article

High-Efficiency and Low-NOx Hydrogen Combustion by High Pressure Direct Injection

2010-10-25
2010-01-2173
Hydrogen can be produced from various renewable energy sources, therefore it is predicted that hydrogen could play a greater role in meeting society's energy needs in the mid- to long-term. Conventional hydrogen engines have some disadvantages: higher cooling loss results in low thermal efficiency and abnormal combustion (backfire, pre-ignition, higher burning velocity) limits high load operation. Direct injection is an effective solution to overcome these disadvantages, but combustion methods that enable both high efficiency and low NOx have yet to be studied in enough detail. In this research, high-efficiency and low-NOx hydrogen combustion was investigated using a prototype high-pressure hydrogen injector (maximum 30 MPa). Experiments were carried out with a 2.2-liter 4-cylinder diesel engine equipped with a centrally mounted hydrogen injector, a toroidal shape combustion chamber, and a spark plug in the glow plug position.
Technical Paper

High Efficiency Diesel Engine with Low Heat Loss Combustion Concept - Toyota’s Inline 4-Cylinder 2.8-Liter ESTEC 1GD-FTV Engine -

2016-04-05
2016-01-0658
A highly efficient new 2.8-liter inline 4-cylinder diesel engine has been developed in response to growing demand for diesel engines and to help save energy while providing high-torque performance. Engine efficiency was improved by reducing cooling loss based on an innovative combustion concept applied across the whole engine. Cooling loss was reduced by restricting in-cylinder gas flows and improving combustion chamber insulation. To prevent the restricted gas flows from affecting emissions, a new combustion chamber shape was developed that increased air utilization in the cylinder through optimizing the in-cylinder fuel distribution. Combustion chamber insulation was improved by a new insulation coat that changes the wall surface temperature in accordance with the gas temperature. This reduces cooling loss and avoids the trade-off effect of intake air heating.
Technical Paper

Effects of High Turbulence Flow on Knock Characteristics

2004-03-08
2004-01-0977
In enhancing the performance of automotive internal combustion engines, increasing the compression ratio offers an effective means of improving engine thermal efficiency. If the compression ratio is increased, however, the problem of knock occurs in exchange for improvement in engine thermal efficiency. In other words, an increase in compression ratio causes in-cylinder compressive end gas temperature to rise, resulting in the occurrence of knock. This in turn requires ignition timing retard to combat the knock. This trade-off makes it difficult to achieve the theoretical maximum combustion efficiency. In this paper, we clarify the feasibility of suppressing the occurrence of knock by increasing the burn rate. Specifically, we increase the burn rate by injecting high-pressure air directly into the combustion chamber, causing highly turbulent in-cylinder flow.
Technical Paper

Effects of Cetane Number and Distillation Characteristics of Paraffinic Diesel Fuels on PM Emission from a DI Diesel Engine

2004-10-25
2004-01-2960
Fischer-Tropsch Diesel (FTD) fuel is expected to be a promising clean diesel fuel in the future because of its characteristics of zero sulfur, zero aromatics and a high cetane number. However, the optimum fuel properties for diesel engines have not been realized. In this study, the effects of cetane number and distillation characteristics on engine-out PM emissions from a conventional direct injection diesel engine were investigated by using paraffinic fuels which were made to simulate FTD fuel. From the results of the vehicle exhaust emissions test and engine dynamometer test, it was found that the narrow distillation characteristics (which eliminates heavy hydrocarbon fraction) could reduce the soluble organic fraction (SOF) in PM emissions, and the excess high cetane number characteristic promoted the formation of insoluble organic fraction (ISOF).
Technical Paper

Effects of CCD on Emissions from DISI Engine Using Different Fuel Distillation Properties

2004-06-08
2004-01-1954
Combustion chamber deposits (CCD) in wall-guided stratified charged direct injection spark ignition (DISI) engines affect combustion significantly because CCD may disturb the air-fuel mixture formation and, as a result, cause emission deterioration. For the design of engines and fuels, it is therefore important to determine the effects of CCD on emissions from DISI engines. In this study, the effects of CCD on emissions from a DISI engine using different fuel distillation properties were investigated. The study results show that, during stratified charged operation, an increase in CCD increased the total hydrocarbon (THC) emissions under high speed conditions and the NOx emissions under the low speed conditions.
Technical Paper

Development of TOYOTA Reflex Burn (TRB) System in DI Diesel

1990-02-01
900658
In order to optimize air-fuel mixture formation in a small DI diesel engine, studies were conducted into the effects of combustion chamber shape and fuel spray impingement. Based on the findings of these studies, the shape of the combustion chamber was modified to induce complex air motion with high turbulence and fuel injection was carefully controlled to achieve optimum impingement intensity. As a result, the mixture formation process was greatly improved with a consequent gain in terms of engine performance. To clarify the reasons for this improvement in combustion, a three-dimensional calculation of the in-cylinder air motion was made. The behaviour of the spray and flame was observed using an endoscope. The new combustion system, named TOYOTA Reflex Burn system (TRB) thus developed has been adopted in production engines since August 1988.
Technical Paper

Development of New Electronic Control System for a Diesel Engine

1986-03-01
860597
An unique diesel engine electronic control system has been developed, which contains two distinctive features. Firstly, the delivery type fuel injection pump has an electro-magnetic valve to control the quantity of fuel injected. This valve is then acutuated to ensure that the timing of the high pressure fuel flow out stops the fuel injection. In the previous diesel electronic control system, the fuel quantity control was effected via the position control of a mechanical spill ring. Since timing control is more suitable than position control for handling by a microcomputer, the electro-magnetic valve is able to control the quantity of fuel injected more precisely, whilst consisting of a simpler structure. Secondly, an optical combustion timing sensor is able to detect initial combustion timing by sensing the light of the combustion flame in the combustion chamber. Using the signal from the sensor, the microcomputer then exerts a compensating control over the fuel injection timing.
Technical Paper

Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept

2016-04-05
2016-01-0675
To improve the thermal efficiency of an internal combustion engine, the application of ceramics to heat loss reduction in the cylinders has been studied [1-2]. The approach taken has focused on the low heat conductivity and high heat resistance of the ceramic. However, since the heat capacity of the ceramic is so large, there is a problem in that the wall temperature increases during the combustion cycle. This leads to a decrease in the charging efficiency, as well as knocking in gasoline engines. To overcome these problems, the application of thermal insulation without raising the gas temperature during the intake stroke has been proposed [3-4]. As a means of achieving this, we developed a "temperature swing heat insulation coating" [5, 6, 7, 8, 9]. This reduces the heat flux from the combustion chamber into the cooling water by making the wall temperature follow the gas temperature as much as possible during the expansion and exhaust strokes.
Technical Paper

Development of High Tumble Intake-Port for High Thermal Efficiency Engines

2016-04-05
2016-01-0692
Improving vehicle fuel economy is a central part of efforts toward achieving a sustainable society. An effective way of accomplishing this is to enhance the engine thermal efficiency. Mitigating knock and reducing engine heat loss are important aspects of enhancing the thermal efficiency. Cooled exhaust gas recirculation (EGR) is regarded as a key technology because it is capable of achieving both of these objectives. For this reason, it has been adopted in a wide range of both hybrid vehicles and conventional vehicles in recent years. In EGR equipped engines, fast combustion is regarded as one of the most important technologies, since it realizes higher EGR ratio. To create fast combustion, generation of strong in-cylinder turbulence is necessary. Strong in-cylinder turbulence is achieved through swirl, squish, and tumble flows. Specifically high tumble flow has been adopted on a number of new engines because of the intense effect of promoting in-cylinder turbulence.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Technical Paper

A New V-8 Engine for the LEXUS LS 400

1989-09-01
892003
A new 4.0 liter V8 engine, 1UZ-FE, has been developed for the luxury sedan, LEXUS LS400. The engine has 4 camshafts and 32 valves, and weighs only 195 kg (430 lbs) having many light alloy components and carefully designed configurations. The appropriate engine displacement and high technology adopted throughout from design to manufacturing process enable the LS400 to run powerfully with excellent fuel economy and a pleasant sounds. It develops 250HP at 5600 rpm and 260ft-lbs of torque at 4400 rpm, and its fuel economy figure, well exceeds the EPA's tax charge level of 22.5mpg. These figures have been achieved through the newest technologies applied to every part of the design, such as: Well studied intake and exhaust systems, centrally located spark plug in the TOYOTA original four-valve combustion chamber, which has a narrow valve including angle, and low friction components like aluminum alloy valve lifters and well balanced moving parts.
X