Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Study of Future Engine Oil (First Report): Future Engine Oil Scenario

2007-07-23
2007-01-1977
In recent years, problems such as global warming, the depletion of natural resources, and air pollution caused by emissions are emerging on a global scale. These problems call for efforts directed toward the development of fuel-efficient engines and exhaust gas reduction measures. As a solution to these issues, performance improvements should be achieved on the oil that lubricates the sliding sections of engines. This report points to features required of future engine oil-such as contribution to fuel consumption, minimized adverse effects on the exhaust gas aftertreatment system, and improved reliability achieved by sludge reduction-and discusses the significance of these features. For engine oil to contribution of engine oil to lower fuel consumption, we examined the effects of reduced oil viscosity on friction using gasoline and diesel engines.
Journal Article

Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines

2012-09-10
2012-01-1615
Abnormal combustion referred to as Low Speed Pre-Ignition (LSPI) may restrict low speed torque improvements in turbocharged Direct Injection (DI) - Spark Ignition (SI) Engines. Recent investigations have reported that the auto-ignition of an engine oil droplet from the piston crevice in the combustion chamber may cause unexpected and random LSPI. This study shows that engine oil formulations have significant effects on LSPI. We found that the spontaneous ignition temperature of engine oil, as determined using High-Pressure Differential Scanning Calorimetry (HP-DSC) correlates with LSPI frequency in a prototype turbocharged DI-SI engine. Based on these findings, we believe that the oxidation reaction of the oil is very important factor to the LSPI. Our test data, using a prototype engine, shows both preventative and contributory effects of base oil and metal-based engine oil additives.
Journal Article

Influence of Bio Diesel Fuel on Engine Oil Performance

2010-05-05
2010-01-1543
To evaluate the influence of FAME, which has poor oxidation stability, on engine oil performance, an engine test was conducted under large volumes of fuel dilution by post-injection. The test showed that detergent consumption and polymerization of FAME were accelerated in engine oil, causing a severe deterioration in piston cleanliness and sludge protection performance of engine oil.
Technical Paper

Development of Low Sulfated Ash and Fuel Economy Diesel Engine Oil

2009-06-15
2009-01-1845
A low sulfated ash (S.Ash) DL-1/C2 0W-30 diesel engine oil with improved fuel economy has been developed to meet the PM targets outlined in the Euro 5 emissions standards and to help achieve the voluntary European CO2 target of 140 g/km. The newly developed engine oil is an effective solution to the trilemma (triple probrem) of reliability (high detergency and high anti wear), low S.Ash, and fuel economy, achieving a fuel economy improvement of 2% and reducing CO2 emissions by 3 g/km.
Technical Paper

Development of ILSAC GF-5 0W-20 Fuel Economy Gasoline Engine Oil

2012-09-10
2012-01-1614
We report in this paper our newly developed technology applied to ILSAC GF-5 0W-20 engine oil that offers great fuel economy improvement over GF-4 counterpart, which is a key performance requirement of modern engine oil to reduce CO2 emissions from a vehicle. Our development strategy of the oil consisted of two elements: (1) further friction reduction under mixed and hydrodynamic lubrication conditions considering use of roller rocker arm type valve train system and (2) lowering viscosity at low temperature conditions to improve fuel economy under cold cycles. Use of roller rocker arm type valve train system has been spreading, because of its advantage of reducing mechanical friction. Unlike engine with conventional direct-acting type valve train system, lubrication condition of engine with the roller rocker arm type valve train system has higher contribution of mixed or hydrodynamic lubrication conditions rather than boundary lubrication condition.
X