Refine Your Search

Topic

Author

Search Results

Technical Paper

Variation in Nerve Fiber Strain in Brain Tissue Subjected to Uniaxial Stretch

2007-10-29
2007-22-0006
Diffuse axonal injury (DAI) is the most frequent type of closed head injury involved in vehicular accidents, and is characterized by structural and functional damage of nerve fibers in the white matter that may be caused by their overstretch. Because nerve fibers in the white matter have an undulated network-like structure embedded in the neuroglia and extracellular matrix, and are expected to be much stiffer than other components, the strain in the nerve fiber is not necessarily equal to that in the white matter. In this study, the authors have measured strain of the nerve fibers running in various directions in porcine brain tissue subjected to uniaxial stretch and compared them with global strain (tissue strain). The nerve fiber strain had a close correlation with their direction, and was smaller than surrounding global strain.
Technical Paper

Variable Axial Composite Lightweight Automotive Parts Using Anisotropic Topology Optimization and Tailored Fiber Placement

2022-03-29
2022-01-0344
This paper presents a design method for continuous fiber composites in three-dimensional space with locally varying orientation distribution and their fabrication method. The design method is formulated based on topology optimization by augmented tensor field design variables. The fabrication method is based on Tailored Fiber Placement technology, whereby a CNC embroidery machine prepares the preform. The fiber path is generated from an optimized orientation distribution field. The preform is formed with vacuum-assisted resin transfer molding. The fabricated prototype weighs 120 g, a 70% weight reduction, achieving 3.5× mass-specific stiffness improvement.
Technical Paper

Twenty-Year Review of Polymer-Clay Nanocomposites at Toyota Central R&D Labs., Inc.

2007-04-16
2007-01-1017
More than twenty years have passed since we invented polymer-clay nanocomposites (PCN), in which only a few wt.-% of silicate is randomly and homogeneously dispersed in the polymer matrix. When molded, these nanocomposites show superior properties compared to pristine polymers such as tensile strength, tensile modulus, heat distortion temperature, gas barrier property, and so on. The number of papers on PCN has increased rapidly in recent years, reaching over 500 only in 2005. As the pioneers of the new technology, we will review its history highlighting our works. Epoch-making events of PCN are as follows: In 1985, The first PCN, nylon 6-clay hybrid (NCH), was invented. In 1987, NCH was first presented at the ACS Fall Meetings. In 1989, NCH was presented at the MRS Fall Meetings, firing PCN. In 1989, Toyota launched cars equipped with a NCH part. In 1996, Clay was found to cause a memory effect in liquid crystals.
Technical Paper

Three-Dimensional Road Structure Estimation by Fusion of a Digital Road Map and an Image

2002-03-04
2002-01-0758
Estimating distant road structure will be an important factor in determining the extent of danger of detected obstacles. There are some methods to estimate the road structure by an image from an onboard camera. However, the results are not sufficient due to the vertical curvature of roads and the limitation of image resolution. In this paper, a new method is proposed to estimate the 3-D road structure by fusion of a 2-D digital road map and an image from a camera. The effect of this method is confirmed by using synthesized data and actual data.
Technical Paper

Study of Future Engine Oil (First Report): Future Engine Oil Scenario

2007-07-23
2007-01-1977
In recent years, problems such as global warming, the depletion of natural resources, and air pollution caused by emissions are emerging on a global scale. These problems call for efforts directed toward the development of fuel-efficient engines and exhaust gas reduction measures. As a solution to these issues, performance improvements should be achieved on the oil that lubricates the sliding sections of engines. This report points to features required of future engine oil-such as contribution to fuel consumption, minimized adverse effects on the exhaust gas aftertreatment system, and improved reliability achieved by sludge reduction-and discusses the significance of these features. For engine oil to contribution of engine oil to lower fuel consumption, we examined the effects of reduced oil viscosity on friction using gasoline and diesel engines.
Technical Paper

Stratification Features of Swirl Nozzle Sprays and Slit Nozzle Spray in DI Gasoline Combustion

2003-05-19
2003-01-1812
The stratification feature of DI gasoline combustion was studied by using a constant volume combustion vessel. An index of stratification degree, defined as volumetric burning velocity, has been proposed based on the thermodynamic analysis of the indicated pressure data. The burning feature analysis using this stratification degree and the fuel vapor concentration measurement using He-Ne laser ray absorption method were carried out for the swirl nozzle spray with 90° cone angle and the slit nozzle spray with 60° fan angle. Ambient pressure and ambient temperature were changed from atmospheric condition to 0.5∼0.6 MPa and 465 K, respectively. Air Swirl with swirl ratio of 0∼1.0 were added for the 90° swirl nozzle spray. Single component fuels with different volatility and self-ignitability from each other were used besides gasoline fuel. The major findings are as follows. High ambient temperature improves stratification degree due to the enhanced fuel vaporization and vapor diffusion.
Technical Paper

Stereo Vision System for Advanced Vehicle Safety System

2007-04-16
2007-01-0405
In this paper, we will introduce a stereo vision system developed as a sensor for a vehicle's front monitor. This system consists of three parts; namely, a stereo camera that collects video images of the forward view of the vehicle, a stereo ECU that processes its output image, and a near-infrared floodlight for illuminating the front at night. We were able to develop an obstacle detection function for the Pre-Crash Safety System and also a traffic lane detection function for a Lane-Keeping Assist System. Especially in regard to the obstacle detection function, we were able to achieve real-time processing of the disparity image calculations that had formerly required long processing times by using two types of recently developed LSIs.
Technical Paper

Recycling Technology of Surface Material for Interior Trims

2000-03-06
2000-01-0741
Two-layered surface materials composed of a thermoplastic olefin elastomer (TPO) skin and a cross-linked polypropylene (PP)foam are increasingly replacing the conventional PVC skin/PVC foam for interior trims. In the past, recycled material obtained by melt-blending TPO skin and PP foam could not be re-used for TPO skin because of its appearance. A new recycling technology using the reaction biaxial extruder with a reaction agent can decompose the network structure of PP foam. As a result, PP foam is dispersed into TPO uniformly and the recycled material has properties and an appearance similar to virgin TPO. These new properties may allow the application of the recycled material as a surface material.
Technical Paper

Real Time Oil Concentration Measurement in Automotive Air Conditioning by Ultraviolet Light Absorption

1991-02-01
910222
A method of real time oil concentration measurment has been developed utilizing the effect of ultraviolet light absorption by lubricating oil in the liquid refrigerant line of an automotive air conditioning system. The light wavelengths from 200nm to 370nm are selected based on the ultraviolet light absorption sensitivity of the oils and refrigerants (CFC12,HFC134a). The effects of temperature,pressure and contaminantion on the absorbance of light are investigated in order to determine how these parameters affect the concentration measurement. The density changes of refrigerants are then compensated in the calculation for the oil concentration. The uncertainties of the overall concentration measurement are less than ±0.1 weight percent at 1 weight percent concentration. A transient oil circulation of the automotive air conditioner is measured by using this method.
Technical Paper

Quantitative Optical Analysis and Modelling of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions

2018-09-10
2018-01-1728
This study models short circuits and blow-outs of spark channels. The short circuit model assumes that a spark channel is short-circuited between two arbitrary locations when the electric potential difference between the two locations exceeds the voltage which enables electrical insulation breakage in-between. The threshold voltage can be raised by increasing the distance between the two locations and decreasing the discharge current. Discharge current, in this model, represents the influence of both the spread and the number of electrically charged particles, i.e., electrons and positive ions, distributed near the two locations. Meanwhile, the blow-out model assumes that a strong flow diffuses electrons and positive ions in the spark channel, and consequently the discharge blows out.
Technical Paper

Numerical Analysis of Fuel Behavior in a Port-Injection Gasoline Engine

1997-02-24
970878
Three-dimensional numerical analysis of fuel liquid and mixture behavior in a port-injection gasoline engine is assessed by comparing calculations with measurements. The fuel mass distributed in the intake port and cylinder is measured using an engine with hydraulic valve and gas sampling system. The experimental results show that about half of the fuel mass per injection enters the cylinder, and the rest stays in the port. The difference of the mass fraction of injected fuel directly entering the cylinder is small between the cases of single pulse injection and serial injection. Therefore, three-dimensional calculation presupposing single pulse injection has difficulty in predicting the in-cylinder mixture formation process, although it can analyze the amount of fuel wetting the port wall. The calculations are performed for a port-injection engine, and the differences of fuel behavior with respect to swirl control valve opening and wall temperature are discussed.
Technical Paper

NOx Reduction Behavior on Catalysts With Non-Thermal Plasma in Simulated Oxidizing Exhaust Gas

2004-06-08
2004-01-1833
NOx reduction activity in an oxidizing exhaust gas was significantly improved by discharging non-thermal plasma and catalysts (plasma assisted catalysis). We investigated effective catalyst for plasma assisted catalysis in view of hydrocarbon-selective catalytic reduction(HC-SCR). Plasma assist was effective for γ-alumina and alkali or alkaline earth metals loaded zeolite and γ-alumina showed the highest NOx conversion among these catalysts. On the other hand, Plasma assist was not effective for Cu-ZSM-5 and Pt loaded catalyst. The NOx conversion for the plasma assisted γ-alumina decreased by formation of a deposit on the catalyst below 400°C. It is shown that indium loading on γ-alumina improved the NOx reduction activity and suppressed the degradation of the NOx reduction activity at 300°C with plasma assist.
Technical Paper

Multifunctional Surface Treatment for Car Air Conditioners

1998-02-23
980284
In order to improve corrosion resistance and thermal efficiency of the air conditioner evaporator, a coating which provides hydrophilicity was formed over the chromate coating. In addition, there has been greater demand for air with fewer smells. This report describes the cause of “dusty odor” and a method to reduce it. The dusty odor is caused by a little corrosion of the substrate aluminum. Hydrophilic coating film dissolves little by little in condensed water, and substrate aluminum is exposed. A method to prevent the odor was developed by forming a coating giving hydrophilicity and durability to the evaporator surface.
Technical Paper

Measurement of Air-Fuel Mixture Distribution in a Gasoline Engine Using LIEF Technique

1992-10-01
922356
The laser-induced exciplex fluorescence (LIEF) technique, currently used to observe mixture formation in a diesel engine, has been applied to a spark ignition (SI) engine and a new equivalence ratio calibration technique has been developed in order that two-dimensional measurements of the equivalence ratio may be made in an operating engine. Spectrally separated fluorescent images of liquid and vapor phase fuel distributions were obtained by adding new exciplex-forming dopants to the gasoline fuel. Dual light sheets from an excimer laser were introduced into one of the cylinders of a 4-valve lean-burn engine, and 2-D images of the mixture formation were recorded at pre-set crank angles during the induction and compression strokes by an image-intensified camera equipped with the appropriate filter.
Technical Paper

Low Friction Property and its Mechanism of DLC-Si Films Under Dry Sliding Conditions

2007-04-16
2007-01-1015
Diamond-like carbon (DLC) films are of significant interest for the automobile field, because they possess the potential to improve friction properties under various sliding conditions. Among the various DLC films, the authors focus on silicon-containing DLC (DLC-Si) films, which exhibit extremely low friction coefficient under dry sliding conditions in an ambient air atmosphere. The aim of this study is to examine the influence of silicon content in DLC-Si films on the friction property of the films, and to clarify the low friction mechanism of the films. The friction test was conducted under dry sliding conditions. It was found that the films have an exceedingly low friction coefficient (about 0.05) ranging in silicon content from 4 at% to 17 at%. In order to examine the low friction mechanism of the films, surface analyses were done on the wear surface of DLC-Si films slid against bearing steel.
Technical Paper

Investigation on Oxidation Stability of Engine Oils Using Laboratory Scale Simulator

1995-10-01
952528
The purposes of this paper are to develop a new laboratory oxidation stability testing method and to clarify factors relative to the viscosity increase of engine oil. Polymerized products, obtained from the oil after a JASO M333-93 engine test, were found to consist mainly of carboxyl, nitrate and nitro compounds and to increase the oil viscosity. A good similarity between the JASO M333-93 test and the laboratory simulation test was found for the polymerized products. The products were obtained not by heating oil only in air but by heating oil while supplying a synthetic blowby gas consisting of fuel pyrolysis products, NO, SO2 and air. The laboratory test has also revealed that the viscosity increase depends on oil quality, organic Fe content and hydrocarbon composition in the fuel. Moreover, it has been found that blowby gas and organic Fe accelerate ZnDTP consumption and that aromatics concentration in the fuel correlates with the viscosity increase of oil.
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

2011-08-30
2011-01-1818
The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
Technical Paper

Influence of Engine Oil Viscosity on Piston Ring and Cam Face Wear

1993-10-01
932782
The influence of engine oil viscosity on the wear of piston rings and cam faces has been investigated by fired engine tests using a radioisotope (RI) tracer technique. High-temperature and high-shear-rate (HTHS; 150°C, 1O6 s-1) viscosities of the experimental oils prepared are 2.2, 2.4, 2.6 and 3.1 mPa•s. At an oil temperature of 90°C the wear of piston rings and cam faces did not increase, even if the HTHS viscosity was lowered down to 2.2 mPa•s. However, both piston rings and cam faces exhibited an increase in wear below 2.4 mPa•s at 130°C. It was also recognized that valve train wear did not significantly increase with reducing viscosity in the motored engine tests at a temperature of 50°C. From these test results, it was suggested that the oil with the HTHS viscosity of 2.6 mPa•s sufficiently demonstrates the antiwear performance equivalent to that with around 3.0 mPa•s for application to piston rings and cam faces.
Technical Paper

Improvement of NOx Storage-Reduction Catalyst

2007-04-16
2007-01-1056
In order to enhance the catalytic performance of the NOx Storage-Reduction Catalyst (NSR Catalyst), the sulfur tolerance of the NSR catalyst was improved by developing new support and NOx storage materials. The support material was developed by nano-particle mixing of ZrO2-TiO2 and Al2O3 in order to increase the Al2O3-TiO2 interface and to prevent the ZrO2-TiO2 phase from sintering. A Ba-Ti oxide composite material was also developed as a new NOx storage material containing highly dispersed Ba. It was confirmed that the sulfur tolerance and activity of the developed NSR catalyst are superior to that of the conventional one.
Technical Paper

Improvement of Heat Resistance for Bioplastics

2003-03-03
2003-01-1124
We studied the adoption of plastics derived from plants (bioplastics) such as poly(lactic acid) (PLA) for automotive parts in order to contribute to suppressing the increase in CO, emissions. For this application. major improvements of heat and impact resistance are needed. As a method to improve heat resistance, we developed PLA combined with clay of high heat resistance. As a result. we succeeded in synthesizing a PLA-clay nanocomposite using 18(OH)2-Mont. In-mold crystallization of PLA-clay nanocomposite lead to the great suppression of storage modulus decrease at high temperature. which in turn improved the heat resistance of PLA.
X