Refine Your Search

Topic

Author

Search Results

Journal Article

Verification of ASSTREET Driver-Agent Model by Collaborating with the Driving Simulator

2012-04-16
2012-01-1161
This paper proposes a novel method of verifying comprehensive driver model used for the evaluation of driving safety systems, which is achieved by coupling the traffic simulation and the driving simulator (DS). The method consists of three-step procedure. In the first step, an actual driver operates a DS vehicle in the traffic flow controlled by the traffic simulation. Then in the next step, the actual driver is replaced by a driver model and the surrounding vehicle maneuvers are replayed using the recorded data from the first step. Then, the maneuver by the driver model is compared directly with the actual driver's maneuver along the simulation time steps.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Validation of Diesel Fuel Spray and Mixture Formation from Nozzle Internal Flow Calculation

2005-05-11
2005-01-2098
A series calculation methodology from the injector nozzle internal flow to the in-cylinder fuel spray and mixture formation in a diesel engine was developed. The present method was applied to a valve covered orifice (VCO) nozzle with the recent common rail injector system. The nozzle internal flow calculation using an Eulerian three-fluid model and a cavitation model was performed. The needle valve movement during the injection period was taken into account in this calculation. Inside the nozzle hole, cavitation appears at the nozzle hole inlet edge, and the cavitation region separates into two regions due to a secondary flow in the cross section, and it is distributed to the nozzle exit. Unsteady change of the secondary flow caused by needle movement affects the cavitation distribution in the nozzle hole, and the spread angle of the velocity vector at the nozzle exit.
Journal Article

Validation and Modeling of Transient Aerodynamic Loads Acting on a Simplified Passenger Car Model in Sinusoidal Motion

2012-04-16
2012-01-0447
Dynamic wind-tunnel tests of a simplified passenger car model were conducted using a two-degree-of-freedom model shaker. Time-resolved aerodynamic loads were derived from a built-in six-component balance and other sensors while the model underwent sinusoidal heaving and pitching motions at frequencies up to 8 Hz. The experimental results showed that frequency-dependent gains and phase differences between the model height/angle and the aerodynamic loads are in close agreement with those predicted by large-eddy simulation (LES) using an arbitrary Lagrangian-Eulerian (ALE) method. Based on these findings, transient aerodynamic loads associated with lateral motions were also estimated by LES analysis. Based on the above results, a full-unsteady aerodynamic load model was then derived in the form of a linear transfer function. The force and moment fluctuations associated with the vertical and lateral motions are well described by the full-unsteady aerodynamic load model.
Technical Paper

Universal Diesel Engine Simulator (UniDES) 2nd Report: Prediction of Engine Performance in Transient Driving Cycle Using One Dimensional Engine Model

2013-04-08
2013-01-0881
The aim of this research is to develop the diesel combustion simulation (UniDES: Universal Diesel Engine Simulator) that incorporates multiple-injection strategies and in-cylinder composition changes due to exhaust gas recirculation (EGR), and that is capable of high speed calculation. The model is based on a zero-dimensional (0D) cycle simulation, and represents a multiple-injection strategy using a multi-zone model and inhomogeneity using a probability density function (PDF) model. Therefore, the 0D cycle simulation also enables both high accuracy and high speed. This research considers application to actual development. To expand the applicability of the simulation, a model that accurately estimates nozzle sac pressure with various injection quantities and common rail pressures, a model that accounts for the effects of adjacent spray interaction, and a model that considers the NOx reduction phenomenon under high load conditions were added.
Technical Paper

Temperature Distribution and Lubrication Characteristics of Connecting Rod Big End Bearings

1995-10-01
952550
Temperature distributions on the surface of a connecting rod big end bearing were measured to understand the margin to the allowable limiting temperature. The results show that the temperature difference between the bearing surface and the feed oil is independent of the engine load but quadratically increased with the engine speed, and that the bearing surface temperature on the rod side is higher than those on the cap side, and that the high temperature regions appeared near the edges on the rod side of the bearing under high speed operations. The results were analyzed by the observation of rubbing traces on the bearing surface and the EHD lubrication theory.
Technical Paper

Study of Future Engine Oil (First Report): Future Engine Oil Scenario

2007-07-23
2007-01-1977
In recent years, problems such as global warming, the depletion of natural resources, and air pollution caused by emissions are emerging on a global scale. These problems call for efforts directed toward the development of fuel-efficient engines and exhaust gas reduction measures. As a solution to these issues, performance improvements should be achieved on the oil that lubricates the sliding sections of engines. This report points to features required of future engine oil-such as contribution to fuel consumption, minimized adverse effects on the exhaust gas aftertreatment system, and improved reliability achieved by sludge reduction-and discusses the significance of these features. For engine oil to contribution of engine oil to lower fuel consumption, we examined the effects of reduced oil viscosity on friction using gasoline and diesel engines.
Technical Paper

Structural Vibration Analysis in Turbocharger-Exhaust Systems

1993-05-01
931318
Engine running tests and excitation tests were performed to reveal the vibration behavior in a turbocharger-exhaust system related to the turbocharger's operating sound. The operating sound was caused by the resonant vibration excited by the unbalanced inertia force of the rotor. The turbocharger-exhaust system had six resonant frequencies in the operating speed range of the rotor. At resonant speeds, the whole turbocharger was translating or rotating due to bending and torsional deflection of the exhaust manifold. Based on the test results, the vibration behavior could be well simulated by a rigid body-spring model with six degree of freedom. Furthermore, the model was used to analyze the relation between the stiffness of the exhaust manifold and the vibration level. Increasing the stiffness of the exhaust manifold was effective in sufficiently reducing the vibration and sound.
Technical Paper

Stratification Features of Swirl Nozzle Sprays and Slit Nozzle Spray in DI Gasoline Combustion

2003-05-19
2003-01-1812
The stratification feature of DI gasoline combustion was studied by using a constant volume combustion vessel. An index of stratification degree, defined as volumetric burning velocity, has been proposed based on the thermodynamic analysis of the indicated pressure data. The burning feature analysis using this stratification degree and the fuel vapor concentration measurement using He-Ne laser ray absorption method were carried out for the swirl nozzle spray with 90° cone angle and the slit nozzle spray with 60° fan angle. Ambient pressure and ambient temperature were changed from atmospheric condition to 0.5∼0.6 MPa and 465 K, respectively. Air Swirl with swirl ratio of 0∼1.0 were added for the 90° swirl nozzle spray. Single component fuels with different volatility and self-ignitability from each other were used besides gasoline fuel. The major findings are as follows. High ambient temperature improves stratification degree due to the enhanced fuel vaporization and vapor diffusion.
Technical Paper

Schlieren Observations of In-Cylinder Phenomena Concerning a Direct-Injection Gasoline Engine

1998-10-19
982696
The schlieren visualization of in-cylinder processes from the side of an engine cylinder is useful to understand the phenomena which change along the cylinder axis. A transparent collimating cylinder, TCC, permits schlieren observation inside the cylinder through its transparent wall. In this study, a single cylinder visualization engine with the TCC was applied to a direct-injection gasoline engine. A fuel spray, mixture formation and combustion were observed with a simultaneous measurement of in-cylinder pressure. The shape of the fuel spray and subsequent mixture formation process are drastically changed with the injection timing. The images of luminous flame were also taken with the schlieren images during the combustion period. Stable combustion, misfire and abnormal combustion are discussed with the comparison between the observed results and in-cylinder pressure analysis.
Technical Paper

Research and Development of a New Direct Injection Gasoline Engine

2000-03-06
2000-01-0530
A new stratified charge combustion system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle. The stratified mixture is produced by the combination of this fan-spray and a shell-shaped piston cavity. Both under-mixing and over-mixing of fuel in the stratified mixture is reduced by this system. This combustion system does not require distinct charge motion such as tumble or swirl, which enables intake port geometry to be simplified to improve full load performance. The effects of the new system on engine performance at part load are improved fuel consumption and reduced smoke, CO and HC emissions, obviously at medium load and medium engine speed. HC emissions at light load are also improved even with high EGR conditions.
Technical Paper

Reduction of the BPF Noise Radiated from an Engine Cooling Fan

2014-04-01
2014-01-0631
This study investigates the reduction of the Blade Passing Frequency (BPF) noise radiated from an automotive engine cooling fans, especially in case of the fan with an eccentric shroud. In recent years, with the increase of HV and EV, noise reduction demand been increased. Therefore it is necessary to reduce engine cooling fan noise. In addition, as a vehicle trend, engine rooms have diminished due to expansion of passenger rooms. As a result, since the space for engine cooling fans need to be small. In this situation, shroud shapes have become complicated and non-axial symmetric (eccentric). Generally, the noise of fan with an eccentric shroud becomes worse especially for BPF noise. So it is necessary to reduce the fan BPF noise. The purposes of this paper is to find sound sources of the BPF noise by measuring sound intensity and to analyze the flow structure around the blade by Computational Fluid Dynamics (CFD).
Technical Paper

Reduction of Diesel Particulate Matter by Oil Consumption Improvement Utilizing Radioisotope Tracer Techniques

1997-05-01
971630
A study was conducted to reduce unburned oil fractions in diesel particulate matter (PM) by improving oil consumption. A method utilizing radioisotope 14C was developed to measure the unburned oil fractions separately for the four paths by which oil is consumed: valve stem seals, piston rings, PCV system, turbocharger. The conversion ratio of oil consumption to PM was calculated by comparing the unburned oil emission rates with oil consumption rates, which were obtained by the use of the 35S tracer method. The result in an experimental diesel engine shows the highest conversion ratio for the oil leaking through the valve stem seals. The modifications to the engine were thereby focused on reducing the leakage of the stem seals. This stem seal modification, along with piston ring improvements, reduced oil consumption, resulting in the unburned oil fractions in PM being effectively reduced.
Technical Paper

Quantitative Optical Analysis and Modelling of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions

2018-09-10
2018-01-1728
This study models short circuits and blow-outs of spark channels. The short circuit model assumes that a spark channel is short-circuited between two arbitrary locations when the electric potential difference between the two locations exceeds the voltage which enables electrical insulation breakage in-between. The threshold voltage can be raised by increasing the distance between the two locations and decreasing the discharge current. Discharge current, in this model, represents the influence of both the spread and the number of electrically charged particles, i.e., electrons and positive ions, distributed near the two locations. Meanwhile, the blow-out model assumes that a strong flow diffuses electrons and positive ions in the spark channel, and consequently the discharge blows out.
Technical Paper

Numerical Investigation of Vehicle Aerodynamics with Overlaid Grid System

1995-02-01
950628
The drag reduction mechanism in newly developed low aerodynamic drag model car is investigated through numerical simulation. In order to deal with the computational domain around a three-dimensional complicated vehicle body, the method of overlaid grid system is employed. The results of computational case study on the body shape demonstrate that the lateral tapering near the rear end and the spats around the wheels bring better flow properties for drag reduction, such as the pressure recovery in the wake.
Technical Paper

Numerical Analysis on Multi-Component Fuel Behaviors in a Port-Injection Gasoline Engine

1999-10-25
1999-01-3642
A multi-component fuel vaporization model is developed for numerical analysis of specific fuel component behaviors in port-fuel-injection(PFI) gasoline engines. In order to specify the differences of in-cylinder fuel distribution among its components, three-dimensional calculations of intake flow, spray and vapor motion of each component are performed with respect to engine wall temperature and the distillation characteristics of the fuel. Simultaneous measurements of in-cylinder behaviors of different volatility components in the fuel are also carried out using a laser-induced fluorescence (LIF) technique to validate the calculation results. In both measurements and calculations, the same fuels are used, which are composed of seven or eight components to simulate the distillation characteristics of two kinds of gasoline. The in-cylinder vapor amount of high and low volatility components is compared between the calculations and the experiments.
Technical Paper

Numerical Analysis of Fuel Behavior in a Port-Injection Gasoline Engine

1997-02-24
970878
Three-dimensional numerical analysis of fuel liquid and mixture behavior in a port-injection gasoline engine is assessed by comparing calculations with measurements. The fuel mass distributed in the intake port and cylinder is measured using an engine with hydraulic valve and gas sampling system. The experimental results show that about half of the fuel mass per injection enters the cylinder, and the rest stays in the port. The difference of the mass fraction of injected fuel directly entering the cylinder is small between the cases of single pulse injection and serial injection. Therefore, three-dimensional calculation presupposing single pulse injection has difficulty in predicting the in-cylinder mixture formation process, although it can analyze the amount of fuel wetting the port wall. The calculations are performed for a port-injection engine, and the differences of fuel behavior with respect to swirl control valve opening and wall temperature are discussed.
Technical Paper

Multifunctional Surface Treatment for Car Air Conditioners

1998-02-23
980284
In order to improve corrosion resistance and thermal efficiency of the air conditioner evaporator, a coating which provides hydrophilicity was formed over the chromate coating. In addition, there has been greater demand for air with fewer smells. This report describes the cause of “dusty odor” and a method to reduce it. The dusty odor is caused by a little corrosion of the substrate aluminum. Hydrophilic coating film dissolves little by little in condensed water, and substrate aluminum is exposed. A method to prevent the odor was developed by forming a coating giving hydrophilicity and durability to the evaporator surface.
Technical Paper

Modeling of Wall Impinging Behavior with a Fan Shaped Spray

2003-05-19
2003-01-1841
The experiment-based droplet impinging breakup model was applied to a fan shaped spray and the impinging behavior was analyzed quantitatively. Evaluation of the quantitative results with validation tests verified the following. The model enables prediction of fan shaped spray thickness after impingement caused by the breakup of fuel droplets, which could not be represented with the Wall-Jet model, widely used at present. Fuel film movement on a wall is negligible when the injection pressure of the fan shaped spray is high and the spray travelling length is not too short. The proposed heat transfer coefficient between fuel film and the wall is too small to represent the vaporizing rate of the fuel film.
Technical Paper

Mechanism of Intake Valve Deposit Formation Part III: Effects of Gasoline Quality

1992-10-01
922265
Quality control of gasoline constituents and its effect on the Intake Valve Deposits (IVD) has become a recent issue. In this paper, the effects of gasoline and oil quality on intake valve deposits were investigated using an Intake Valve Deposit Test Bench and a Sludge Simulator. The deposit formation from the gasoline maximized at an intake valve temperature of approximately 160 °C, and the deposits formed from the engine oil were maximum at approximately 250 °C. Therefore, the contribution of the gasoline or the engine oil appears to depend on the engine conditions. The gasoline which contains MTBE or ethanol with no detergent additive slightly increases the deposition amount. The gasoline with a superior detergent significantly decreases the deposition amount even when MTBE or ethanol is blended in the gasoline. Appropriate detergent fuel additive retards the oil deterioration.
X