Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Structural Vibration Analysis in Turbocharger-Exhaust Systems

1993-05-01
931318
Engine running tests and excitation tests were performed to reveal the vibration behavior in a turbocharger-exhaust system related to the turbocharger's operating sound. The operating sound was caused by the resonant vibration excited by the unbalanced inertia force of the rotor. The turbocharger-exhaust system had six resonant frequencies in the operating speed range of the rotor. At resonant speeds, the whole turbocharger was translating or rotating due to bending and torsional deflection of the exhaust manifold. Based on the test results, the vibration behavior could be well simulated by a rigid body-spring model with six degree of freedom. Furthermore, the model was used to analyze the relation between the stiffness of the exhaust manifold and the vibration level. Increasing the stiffness of the exhaust manifold was effective in sufficiently reducing the vibration and sound.
Technical Paper

Measurement and Simulation of Valve Motion

1993-11-01
931901
The valve motion of a direct-acting valve train was measured, and an equivalent model with the main object of the jump and bounce occurrence and the valve spring stresses was developed, as described below: (1) The jump and bounce were clarified by direct measurement at the positions they occurred. (2) The equivalent model was developed which features the contact elements and the valve spring model with two or more masses per coil and the function of coil contact. (3) Based on the experimental results, identification of parameters and verification of the model were performed. It was proved that the simulation corresponded with the experimental results. (4) Using this model, the accurate prediction of the motions and stresses of reciprocating components becomes possible in the design process. (5) Consequently, a synthetic tool for the design and evaluation for valve trains driven at higher speed is completed.
X