Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of “Aero Slit” - Improvement of Aerodynamic Yaw Characteristics for Commercial Vehicles

To reduse crosswind sensitivity, the yaw moment should be decreased under both transient and steady conditions. The transient condition is when a vehicle comes out immediately from a tunnel into a crosswind while the steady condition is when driving straight along the coastline. After studying the pressure distribution and the flow pattern around the body, we have reached the ideal air flow at the front-side corner that reduces the yaw moment under both conditions. And we have devised an entirely new method to achieve this better air flow. The method uses an internal flow generated by a pressure difference in the flow feeld to create a jet effect and by using only a duct for internal flow to control the outside air flow. It is done without any change to the exterior styling, except at the flow exit. We call it “Aero Slit”. This “Aero Slit” is effective only under crosswind conditions, and does not increase aerodynamic drag when a crosswind is not blowing.
Technical Paper

Concurrent CFD Analysis for Development of Rear Spoiler for Hatchback Vehicles

Airflow effect is one of the important functions demanded of a rear spoiler. It helps prevent mud or dust from swirling up behind the running vehicle, or in the case of driving in the rain or snow, helps prevent rain or snow from adhering to the rear window. During the design process, we often decide on the shape of a spoiler in a relatively short time, focusing primarily on its appearance. Therefore, we established a design method using the recently developed computational fluid dynamics (CFD) to determine the central cross sectional shape of a spoiler that produces a desired airflow effect. We verified its effectiveness through testing.