Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Recent Developments in Vehicle Interior Noise Reduction

In order to reduce the interior noise of a vehicle with a four-cylinder engine, investigations were made using finite element and vector methods, acoustic intensity testing and holography technique. The investigation resulted in inclination of the engine mounting, design changes to the front suspension member, a shock absorber engine mounting, structural modifications to reduce body panel vibration and a new engine mounting to insulate high frequency engine vibration.
Technical Paper

Low Frequency Noise Reduction by Improving Sound Insulation Materials

Conventionally, sound insulation materials have been applied to control interior noise above 500 Hz, and damping materials to control interior noise below 500 Hz. In this paper, the noise control component for vehicle panels, which consists of damping material and sound insulation material, is investigated by using a two-degrees-of-freedom system. The investigation shows that sound insulation material can be effective in reducing interior noise below 500 Hz if its stiffness is reduced. This stiffness depends not only on the spring of the material itself but also on its pneumatic spring which is determined by air-flow resistance. This paper concludes with applications of techniques to reduce interior noise below 500 Hz by improving sound insulation materials.
Technical Paper

A Simulation Method of Rear Axle Gear Noise

A new experimental method, that enables to estimate the body and driveline sensitivity to unit transmitting error of a hypoid gear for automotive rear axle gear noise, has been developed. Measurements were made by exciting the tooth of the drive-pinion gear and that of the ring gear separately using the special devices designed with regard to simulation of acceleration and deceleration. The characteristic of this method is to estimate the forces at the contact point of the gears. Estimation of these forces is carried out under the condition that the higher stiffness is provided by the tooth of the drive-pinion gear and that of the ring gear, compared with the stiffness of the driveshafts and that of the propeller shaft etc., and relative angular displacement of the torsional vibration between the teeth of the drive-pinion gear and those of the ring gear is constant.