Refine Your Search

Topic

Author

Search Results

Technical Paper

Vision of Mobile Information Services

2000-11-01
2000-01-C017
As wireless technologies evolve, in-vehicle information services are becoming more and more essential to vehicle users. In contrast with information services in the home, in-vehicle information services emphasize the use of information to make driving more comfortable, rather than simply displaying information during driving. In particular, traffic information is, unlike other kinds of information, effective in getting to a destination and therefore, must be real-time to be useful. In Japan, car navigation systems have a large market penetration; dynamic route guidance systems (DRGS) operating in concert with navigation systems have been popular since 1995. This paper discusses mobile information services including DRGS. The focus is on the Japanese market where navigation technologies are the most advanced.
Technical Paper

Visibility Requirements for Automobile CRT Displays - Color, Contrast and Luminance

1988-02-01
880218
Display devices are required to have some fundamental functions which are brightness & gradation, colorfullness, resolution & sharpness, response time, and suitable size of the picture. Since the CRT (Cathode Ray Tube) is superior to the other display devices in these requirements, it can offer much information efficiently and effectively. Their visibility should not be evaluated only on the basis of some standards for office automation systems. From the point of view of human factors, visibility investigations of the CRTs for automobiles are examined. In this paper the relationship between the chromaticity difference and the luminance contrast for drivers to read the picture easily, and the luminance of the background in the CRTs for drivers not to be dazzled in the nighttime driving are clarified.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Vehicle Stability Control in Limit Cornering by Active Brake

1996-02-01
960487
Improvement of vehicle dynamics in limit cornering have been studied. Simulations and tests have verified that vehicle stability and course trace performance in limit cornering have been improved by active brake control of each wheel. The controler manages vehicle yaw moment utilizing difference braking force between left and right wheels, and vehicle deceleration utilizing sum of braking forces of all wheels.
Technical Paper

Vehicle Dynamics Innovation with In-Wheel Motor

2011-05-17
2011-39-7204
In-wheel motors (IWM) will be a key technology that contributes to the popularization of electric vehicles. Combining electric drive with IWM enables both good vehicle dynamics and a roomy interior. In addition, the responsiveness of IWM is also capable of raising dynamic control performance to an even higher level. IWM enable vertical body motion control as well as direct yaw control, electric skid control, and traction control. This means that IWM can replace most control actuators used in a vehicle chassis. The most important technology for IWM is to enable the motor to coexist with the brake and the suspension arms inside the wheel. The IWM drive unit described in this paper can be installed with a front double wishbone suspension, the most difficult configuration.
Technical Paper

Validation Test Result Analysis of Plug-in Hybrid Vehicle

2013-04-08
2013-01-1464
In recent years, many various energy sources have been investigated as replacements for traditional automotive fossil fuels to help reduce CO2 emissions, respond to instabilities in the supply of fossil fuels, and reduce emissions of air pollutants in urban areas. Toyota Motor Corporation considers the plug-in hybrid vehicle (PHV), which can efficiently use electricity supplied from infrastructure, to be the most practical current solution to these issues. For this reason, Toyota began sales of the Prius Plug-in Hybrid in 2012 in the U.S., Europe and Japan. This is the first PHV to be mass-produced by Toyota Motor Corporation. Prior to this, in December 2009, Toyota sold 650 PHVs through lease programs for validation testing in the U.S., Europe and Japan. Additional 30 PHVs were introduced in China in March 2011 for the same objective.
Technical Paper

Toyota's New Six-Speed Automatic Transmission AB60E for RWD Vehicles

2007-04-16
2007-01-1098
Toyota Motor Corporation has developed a new six-speed automatic transmission AB60E for longitudinal front engine rear wheel drive (RWD) vehicles. This transmission development was aimed at an improvement of power performance and fuel economy, while achieving a lightweight, compact package and a high torque capacity. In order to achieve this target, a high-capacity ultra-flat torque converter, a highly-rigid transmission case, and an ATF warmer with a valve to switch ATF circuits to an air-cooled ATF cooler have been newly developed. Moreover, a new transmission mode control logic “TOW / HAUL” has been developed to improve power performance and driveability during trailer towing. This automatic transmission has adopted the same gear train and hydraulic control system as the conventional six-speed automatic transmission A760E. This paper describes the structure, major features and performance of the transmission in detail.
Technical Paper

Toyota's New Six-Speed Automatic Transmission A761E for RWD Vehicles

2004-03-08
2004-01-0650
Toyota Motor Corporation has recently developed a new six-speed automatic transmission (A761E) for Front Engine Rear Wheel Drive (FR) vehicles. Following the general trend of increased shift stages and a wider range of gear ratios, this six-speed automatic transmission has been developed with attention paid to the gear steps and a wider range of gear ratios. By balanced selection of close-ratio gears in a wider range, the change greatly improves the power performance and fuel economy of the vehicle. To further improve fuel economy we have adopted new technologies such as low-viscosity ATF, neutral control, and deceleration control by extending the fuel cut range (reset speed). We have also adopted a flat-shaped torque converter, small solenoids, an aluminum oil pump cover, etc. to realize the lightest six-speed automatic transmission in the world.
Technical Paper

Toyota's New Integrated Drive Power Control System

2007-04-16
2007-01-1306
Toyota has developed a new system, which uses integrated control of powertrain by PowerTrain Management (PTM), in order to improve driving comfort and reliability. This system is currently in use on Lexus's new LS460. This system is composed of 4 parts: a generation part, a mediating part, a modification part and a distribution part. In each part, processes are based on drive power and torque. In the generation part, requests from a programmed model driver, Driving Support Computer and Vehicle Dynamics Integrated Management (VDIM) are generated and expressed by drive power. In the mediating part, most suitable vehicle drive power was selected among the requests. In the modification part, the selected request is modified using a programmed powertrain model, which considers internal combustion engine condition and powertrain response and transmission's tolerance. In the distribution part, optimized engine torque and gear ratio are processed.
Technical Paper

Toyota's New Five-Speed Automatic Transmission A750E/A750F for RWD Vehicles

2003-03-03
2003-01-0595
Toyota Motor Corporation has developed a new five-speed automatic transmission (A750E/A750F) for longitudinal front engine rear wheel drive (RWD) vehicles. The development of this transmission has been aimed at improving fuel economy and power performance, achieving the world's top-level weight and compactness, while maintaining high torque capacity. In order to achieve this purpose, the gear train, torque converter, and other components are completely changed, and advanced technology has been applied. Moreover, this automatic transmission has achieved high-quality shift feel and quiet performance. This paper describes the major features and performance of this transmission in detail.
Technical Paper

Toyota New Four-Speed Automatic Transmission for Front Wheel Drive Vehicles

1984-02-01
840049
The design requirement for more efficient vehicle moves a compact car toward front wheel drive arrangement, which requires an entire redesign of its power train. Toyota, with systematic approach from its planning stage, has developed a new automatic transmission series including one 3-speed and two 4-speed transmissions. An extensive examination on gear train arrangements enabled the 3-speed light, compact and highly reliable under the arrangement of Simpson gear train, and freewheel shifts with one-way clutches at every shifting. Two different 4th gear packages with freewheel shift are combined with the 3-speed unit to provide the versatility for the 4-speed units in various installations. Besides, these transmissions feature lock-up clutch converter, oil pump of a new tooth profile and two different control systems: hydraulic and electro-hydraulic.
Technical Paper

Toyota New Compact Five-Speed Automatic Transmission for RWD Passenger Cars

1998-02-23
980820
A new compact five-speed automatic transmission (A650E) has been developed for front engine rear wheel drive cars. The development of this transmission has been aimed at improving fuel consumption, power performance, engine noise reduction during highway cruising and smooth acceleration by employing a wide range of gearing and close gear ratios. Generally a five-speed automatic transmission is larger than a four-speed, because of additional friction elements and gears. This can result in a change in the floor panel of the car body. However, by removing a one-way clutch for second gear and employing a unique gear-train layout, this transmission has the same circumference and length as the conventional four-speed automatic transmission (A340E)(1).1 In order to reduce first or second gear noise, gear specification and supporting structures of planetary gears have been optimized by FEM analysis.
Technical Paper

Toyota Five-Speed Automatic Transmission with Application of Modern Control Theory

1992-02-01
920610
A compact and high-performance five-speed automatic transmission(A350E) has been developed for passenger cars. The development of this transmission has been aimed at improvement in acceleration performance in the low and medium speed range and at smooth acceleration. A five-speed automatic transmission with a simple gear train has been completed by means of the industry's first modern control theory aided shifting technique.
Technical Paper

Toyota Electronic Modulated Suspension (TEMS) System for the 1983 Soarer

1984-02-01
840341
TOYOTA MOTOR CORPORATION had developed the world's first microprocessor controlled suspension system, Toyota Electronic Modulated Suspension (TEMS), which is now being offered on the Toyota Soarer from Feb. '83. This system consists of sensors, switches, electronic control unit (ECU), actuators and shock absorbers. TEMS uses a microprocessor to adjust the damping forces of the front and rear shock absorbers. As a result, suspension can be tuned in two stages (hard and soft cushioning) and driver can choose three control modes (AUTO, SPORT, NORMAL). In AUTO mode, the TEMS system has achieved attitude controls (i.e. squat control, roll control and nosedive control). The TEMS system achieved a 15 - 30% decrease of squat, a 20 - 30% decrease of roll angle, a 10 - 30% decrease of nose-dive and a 30 - 40% decrease of shift-squat.
Technical Paper

Toyota Electro Multivision

1988-02-01
880220
This paper describes the newest CRT display system named “Toyota Electro Multivision”, released in the '88 model Toyota Crown. This system has grown to be a total information system, having multiple new functions, including control, operation and displays for the “hands free” phone. This new system uses a compact disc as its memory media. Here we introduce our design concept for the CRT display system, and outline the system and its key technologies.
Technical Paper

Toyota AA80E 8-Speed Automatic Transmission with Novel Powertrain Control System

2007-04-16
2007-01-1311
Toyota has developed the world's first 8-speed automatic transmission (AA80E) for RWD automobiles. The transmission will first be used in the all-new Lexus LS460. In addition, a novel control system has been developed to maximize the predictability, response, efficiency, and initial quality of the powertrain while utilizing the high number of gear steps.
Technical Paper

Torque Converter Clutch Slip Control System

1995-02-01
950672
The torque converter clutch slip control system adopted in the Toyota A541E automatic transaxle engages the torque converter clutch by applying a steady slip speed to prevent the torque fluctuation of the engine to be transmitted to the drivetrain while enhancing the transmission efficiency of the torque converter. The feedback controller of the slip speed adopts the H∞ (H-Infinity) control theory which offers a high level of robust stability, and is the first of its kind in a mass produced component. As a result, a highly accurate and reliable system has been realized, contributing to large-scale fuel economy.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

The i-REAL Personal Mobility Vehicle

2011-05-17
2011-39-7242
The need for small personal mobility vehicles is growing as urbanization, the aging of society, traffic congestion, and parking become major issues, particularly in inner-city areas. The aging of society also means that more short trips within communities will be made. The i-REAL personal mobility vehicle is a next-generation single-passenger electric vehicle that enables the driver to move around town using a smaller amount of energy. This compact EV has three wheels: two front wheels driven by in-wheel motors and one rear wheel. According to the driver's needs, the i-REAL switches driving modes by changing its wheelbase. It can go slowly, allowing the driver to meet the eyes of passers-by when driving in parks, on sidewalks, or inside shopping malls. When on the road, it can lower its height and drive quickly like a bicycle or motorcycle. The body of the i-REAL leans automatically based on the speed and the turn angle to maintain the balance of the vehicle for any driver.
Technical Paper

The application of VHDL-AMS multi-domain HV simulation to the power performance and the fuel economy during warming up process

2011-05-17
2011-39-7245
In order to reduce CO2, EV and Hybrid Vehicle (HV) are effective. Those type vehicles have different power train from conventional vehicle. Those new power trains drastically improve their efficiency from conventional vehicle with keeping same or superior power performance. On the other hand, those vehicles have the issue for thermal energy shortage during warming up process. The thermal energy is very large. The thermal energy seriously affect on the fuel economy for HV and the mileage for EV. In this paper, the power performance, the fuel economy and the effect of heat energy recovery from the exhaust gas are discussed for HV. For the power performance, the simulated acceleration time of 0-100km/h was 11.8sec and the measured vehicle time was 11.9sec. The error between simulation and actual measurement result was 1.2%. As for the fuel economy, the energy management using exhaust gas heat exchange system improved 10.3% of the fuel consumption during warming up.
X