Refine Your Search

Topic

Author

Search Results

Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

A Measuring Technology to Analyze HC Concentration in the Air Intake System while the Engine is in Operation

2004-03-08
2004-01-0142
In order to correspond to the exhaust emissions regulations that become severe every year, more advanced engine control becomes necessary. Engine engineers are concerned about the Hydrocarbons (HCs) that flow through the air-intake ports and that are difficult to precisely control. The main sources of the HCs are, the canister purge, PCV, back-flow gas through the intake valves, and Air / Fuel ratio (A/F) may be aggravated when they flow into the combustion chambers. The influences HCs give on the A/F may also grow even greater, which is due to the increasingly stringent EVAP emission regulations, by more effective ventilation in the crankcase, and also by the growth of the VVT-operated angle and timing, respectively. In order to control the A/F more correctly, it is important to estimate the amount of HCs that are difficult to manage, and seek for suitable controls over fuel injection and so on.
Technical Paper

A Multi-Dimensional Numerical Method for Predicting Warm-Up Characteristic of Automobile Catalytic Converter Systems

1995-10-01
952413
A multi-dimensional numerical method for predicting the warm-up characteristic of automobile catalytic converter systems was developed to effectively design catalytic converter systems which achieve low tail pipe emissions with satisfactory packagebility. The features of the method are; (1) consideration of the governing phenomena such as gas flow, heat transfer, and chemical reactions (2) capability of predicting warm-up characteristic for not only the catalytic converters but also the system as a whole during emission test modes such as the USA LA-4 mode. The description of the method is presented. The experimental verifications of the method were conducted to assure the accuracy of it. The effect of design parameters such as electrically heated catalyst (EHC), high loading of noble metal and thin honeycomb wall on warm-up characteristic of the catalyst are analyzed in the paper.
Journal Article

A New Generation of Optically Accessible Single-Cylinder Engines for High-speed and High-load Combustion Analysis

2011-08-30
2011-01-2050
Over the last few decades, in-cylinder visualization using optically accessible engines has been an important tool in the detailed analysis of the in-cylinder phenomena of internal combustion engines. However, most current optically accessible engines are recognized as being limited in terms of their speed and load, because of the fragility of certain components such as the elongated pistons and transparent windows. To overcome these speed and load limits, we developed a new generation of optically accessible engines which extends the operating range up to speeds of 6000 rpm for the SI engine version, and up to in-cylinder pressures of 20 MPa for the CI engine version. The main reason for the speed limitation is the vibration caused by the inertia force arising from the heavy elongated piston, which increases with the square of the engine speed.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Technical Paper

A Study of Stratified Charge Combustion Characteristics in New Concept Direct Injection SI Gasoline Engine

2001-03-05
2001-01-0734
A new stratified charge system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle and a shell-shaped piston cavity. This system, basically classified into the wall-guided mixture preparation concept that leads air/fuel mixture to the spark plug periphery by means of spray penetration and piston cavity configuration without an extra intake air flow controlling system, obtained wide engine operating area with stratified combustion and high output performance. This report presents the characteristics of stratified mixture formation and combustion, especially the important factor for achieving stable stratified combustion in the high-speed region, which have been clarified through analytical studies.
Technical Paper

Achieving Lower Exhaust Emissions and Better Performance in an HSDI Diesel Engine with Multiple Injection

2005-04-11
2005-01-0928
The effects of multiple-injection on exhaust emissions and performance in a small HSDI (High Speed Direct Injection) Diesel engine were examined. The causes for the improvement were investigated using both in-cylinder observation and three-dimensional numerical analysis methods. It is possible to increase the maximum torque, which is limited by the exhaust smoke number, while decreasing the combustion noise under low speed and full load conditions by advancing the timing of the pilot injection. Dividing this early-timed pilot injection into two with a small fuel amount is effective for further decreasing the noise while suppressing the increase in HC emission and fuel consumption. This is realized by the reduced amount of adhered fuel to the cylinder wall. At light loads, the amount of pilot injection fuel must be reduced, and the injection must be timed just prior to the main injection in order to suppress a possible increase in smoke and HC.
Technical Paper

An Approach to Improve Engine Sound

1988-02-01
880083
Recently engine sound quality is becoming more noticeable as noise level in a vehicle passenger compartment has been decreasing. It is necessary to reduce such discomforting noise as rumbling noise in order to improve engine sound quality. This paper describes the experimental study to find out causes of rumbling noise in an engine structure and several investigations to reduce rumbling noise. Some new approaches have been introduced to evaluate the influence of an combustion impact, the movement of a crankshaft, timing of rumbling noise and so on. The result shows that the primary cause of rumbling noise is the movement of a crankshaft due to the impact of combustion and next is the vibration characteristics of the engine-transmission assembly (power plant). Finally superior engine sound quality is achieved by increasing counterweights and stiffness of a crankshaft and also by optimizing the spark advance and improving vibration characteristics of various engine parts.
Technical Paper

Analyses of Exhaust Hydrocarbon Compositions and Ozone Forming Potential During Cold Start

1996-10-01
961954
A newly-developed time resolved exhaust gas analysis system was utilized in this study. The hydrocarbon compositions upstream and downstream of the catalytic converter were investigated during cold start and warm up of the Federal Test Procedure(FTP), with three fuels of different aromatic contents. Although engine-out hydrocarbon emissions had high concentrations right after cold start, the specific reactivity was low. This can be explained by the selective adsorption of the high boiling point components which had a high Maximum Incremental Reactivity (MIR) in the intake manifold and engine-oil films. Thereafter, the high boiling point components were desorbed rapidly and consequently specific reactivity increased. Hydrocarbon adsorption of high boiling point components and hydrocarbon conversion of low boiling point components occurred simultaneously on the catalyst during warm up.
Technical Paper

Analysis of Oil Consumption at High Engine Speed by Visualization of the Piston Ring Behaviors

2000-10-16
2000-01-2877
In internal combustion engine, it is well-known that oil infiltrates the combustion chamber through the clearance between the piston ring and the cylinder bore with vertical reciprocating motion of the piston, leading to an increase in oil consumption. The deformation of the cylinder bore is inevitable to some extent in the actual engine because of the tightening of cylinder head bolt and heat load._As to the function of the piston ring, it is desirable that it conforms to such bore deformation. The author et al. made a glass cylinder engine in which closed piston ring gap could be visualized, based on the idea that piston ring conformability to the sliding surface of bore could be evaluated from minute changes of the piston ring gap. This newly-devised visualized engine was an in-line 4-cylinder engine, capable of running up to 6,000 rpm, in which the closed gap of piston ring could be observed minutely during engine operation.
Technical Paper

Analysis of Poor Engine Response Caused by MTBE-Blended Gasoline from the Standpoint of Fuel Evaporation

1992-02-01
920800
Fifty percent distillation temperature (T50) can be used as a warm-up driveability indicator for a hydrocarbon-type gasoline. MTBE-blended gasoline, however, provides poorer driveability than a hydrocarbon-type gasoline with the same T50. The purposes of this paper are to examine the reason for poor engine driveability caused by MTBE-blended gasolines, and to propose a new driveability indicator for gasolines including MTBE-blended gasolines. The static and dynamic evaporation characteristics of MTBE-blended gasolines such as the evaporation rate and the behavior of each component during evaporation were analyzed mainly by using Gas Chromatography/Mass Spectrometry. The results of the analysis show that the MTBE concentration in the vapor, evaporated at ambient temperature (e.g. 24°C), is higher than that in the original gasoline. Accordingly, the fuel vapor with enriched MTBE flows into the combustion chamber of an engine just after the throttle valve is opened.
Technical Paper

Analysis of Visualized Fuel Flow inside the Slit Nozzle of Direct Injection SI Gasoline Engine

2003-03-03
2003-01-0060
In the direct injection spark ignition gasoline engine (D-4), thin fan-shaped high-dispersion, high-penetration and high-atomization spray formed by the slit nozzle generates a stratified mixture cloud without depending on a strong intake air motion, subsequently realizing stable stratified charge combustion. To improve fuel economy further in actual traffic, the region of stratified charge combustion in torque-engine speed map must be expanded by improving spray characteristics. Since the fuel flow inside the nozzle has a large effect on the spray characteristics, it was clarified this effect by visual analysis of the fuel flow inside the nozzle using an enlarged acrylic slit nozzle of 10 magnifications. Consequently, it was found that vortices are generated frequently within a sac even in the case of steady state conditions. The effect on the spray characteristics is corresponding to the vortex scale.
Technical Paper

Anti- Combustion Deposit Fuel Development for 2009 Toyota Formula One Racing Engine

2011-08-30
2011-01-1983
Toyota participated in Formula One1 (F1) Racing from 2002 to 2009. As a result of the downturn in the world economy, various engine developments within F1 were restricted in order to reduce the cost of competing in F1. The limit on the maximum number of engines allowed has decreased year by year. Toyota focused on the engine performance deterioration due to the combustion chamber deposits. In 2009, Toyota was successful in reducing around 40% of the deterioration by making combustion chamber cleaner in cooperation with ExxonMobil. This contributed to good result of 2009 F1 season for Toyota, including two second place finishes.
Technical Paper

Application of a New Combustion Concept to Direct Injection Gasoline Engine

2000-03-06
2000-01-0531
A direct injection (DI) gasoline engine having a new stratified charge combustion system has been developed. This new combustion process (NCP) was achieved by a fan-shaped fuel spray and a combustion chamber with a shell-shaped cavity in the piston. Compared with the current Toyota D-4 engine, wider engine operating area with stratified combustion and higher output performance were obtained without a swirl control valve (SCV) and a helical port. This report presents the results of combustion analyses to optimize fuel spray characteristics and piston cavity shapes. Two factors were found to be important for achieving stable stratified combustion. The first is to create a ball-shaped uniform mixture cloud in the vicinity of the spark plug. The optimum ball-shaped mixture cloud is produced with a fuel spray having early breakup characteristics and uniform distribution, and a suitable side wall shape in the piston cavity to avoid the dispersion of the mixture.
Technical Paper

Carbon Dioxide Measuring Technology in Engine Combustion Chambers

2004-03-08
2004-01-1340
The authors have developed an instrument that measures the CO2 concentration in engine combustion chambers using the infrared absorption method. The characteristics of this technology are as follows: 1 Measuring can be carried out while the engine is running at 600r/min to more than 3000r/min, full load operation. (Applicable to all EGR conditions) 2 Quick response; 2ms 3 High linearity; ±1% Full Scale and under (FS: 10%) 4 No aggravation is caused to the intake/exhaust performance of engines This technology contributes to the improvement of the in-cylinder EGR system using, for instance, a variable valve-timing mechanism that is now expanding in number of applications, and also the conventional EGR system.
Technical Paper

Combustion Development to Achieve Engine Thermal Efficiency of 40% for Hybrid Vehicles

2015-04-14
2015-01-1254
In recent years, enhancing engine thermal efficiency is strongly required. Since the maximum engine thermal efficiency is especially important for HVs, the technologies for improving engine thermal efficiency have been developed. The current gasoline engines for hybrid vehicles have Atkinson cycle with high expansion ratio and cooled exhaust gas recirculation (EGR) system. These technologies contribute to raise the brake engine thermal efficiency to more than 38%.In the near future the consumers demand will push the limit to 40% thermal efficiency. To enhance engine thermal efficiency, it is essential to improve the engine anti-knock quality and to decrease the engine cooling heat loss. To comply with improving the anti-knock quality and decreasing the cooling heat loss, it is known that the cooled EGR is an effective way.
Technical Paper

Combustion Improvement of CNG Engines by Hydrogen Addition

2011-08-30
2011-01-1996
This research aimed to identify how combustion characteristics are affected by the addition of hydrogen to methane, which is the main components of natural gas, and to study a combustion method that takes advantage of the properties of the blended fuel. It was found that adding hydrogen did not achieve a thermal efficiency improvement effect under stoichiometric conditions because cooling loss increased. The same result was obtained under EGR stoichiometric conditions. In contrast, under lean burn conditions, higher thermal efficiency and lower NOx than with methane combustion was achieved by utilizing the wide flammability range of hydrogen to expand the lean limit. Although NOx can be decreased easily by the addition of large quantities of hydrogen, the substantially lower energy density of the fuel causes a substantial reduction in cruising range. Consequently, this research improved the combustion of a CNG engine by increasing the tumble ratio to 1.8.
Technical Paper

Combustion Noise Analysis of Premixed Diesel Engine by Engine Tests and Simulations

2014-04-01
2014-01-1293
When fuel is vaporized and mixed well with air in the cylinder of premixed diesel engines, the mixture auto-ignites in one burst resulting in strong combustion noise, and combustion noise reduction is necessary to achieve high load premixed diesel engine operation. In this paper, an engine noise analysis was conducted by engine tests and simulations. The engine employed in the experiments was a supercharged single cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave data from the cross power spectrum of the sound pressure of the engine noise.
Technical Paper

Cylinder Wear Mechanism in an EGR-Equipped Diesel Engine and Wear Protection by the Engine Oil

1987-11-01
872158
Piston ring moving zone in the cylinder is one of the most critical lubrication regimes in diesel engines. This area is susceptible to combustion substances. In particular, abnormal wear is occasionally detected due to Exhaust Gas Recirculation (EGR) system equipment. In Japan, NOx emission requirements for passenger car diesels have become more stringent effective October 1, 1986. OEMs tend to apply EGR systems to reduce NOx in exhaust gas. In order to identify the phenomenon of abnormal cylinder wear of EGR equipped engine, engine bench tests were conducted under varied conditions in EGR equipment, cooling water temperature and fuel sulfur content. The test results suggest that wear caused at low temperature is mainly corrosive wear attributable to sulfuric acid formed by reaction with fuel sulfur and condensed water.
Technical Paper

Deactivation Mechanism of NOX Storage-Reduction Catalyst and Improvement of Its Performance

2000-03-06
2000-01-1196
A lean burn engine is effective in reducing fuel consumption. NOX storage-reduction catalysts (NSR catalyst) have been developed for these engines. In order to improve the performance of NSR catalysts, suppression of sulfur poisoning, which is one of the main causes of NSR catalyst deactivation, must be improved. In this paper, the sulfur desorption phenomenon has been analyzed from a novel point of view. Based on these results, an NSR catalyst with improved sulfur resistance has been developed by incorporation of highly dispersed titania, and use of a heat resistant zirconia with enhanced basicity.
X