Refine Your Search

Topic

Author

Search Results

Technical Paper

Valve Rocker Arm Material for Investment Casting

1985-11-11
852203
In order to develop the valve rocker arm material for the new type engine, we investigated various materials whose chemical compositions were selected using 30% chromium cast iron, which had shown good results in screening evaluation tests, as the basis. High chromium cast irons are well known for their abrasive wear resistance, but it has been very difficult to apply them for use as rocker arm material because their machinability is very poor, and because it is difficult for them to have a regular microstructure. In this paper, both the manufacturing method for the rocker arm which decreases the disadvantages that high chromium cast iron have and the rocker arm material best suited for this method are described.
Technical Paper

Thin wall and lightweight cylinder block production technology

2000-06-12
2000-05-0067
The automobile industry currently faces many challenges which may greatly impact on its foundry operations. One of these challenges, consumers'' demand for greater fuel efficiency, can be met by reducing the weight of castings used in automobiles, and minimizing engineering tolerances. In answer to this particular demand, engine foundries have begun to either produce cylinder blocks or other castings with aluminum rather than cast iron. However, if a reduction in weight (thin wall and near-net shaping) can be realized with cast iron, there would be numerous merits from the perspective of cost and compactness and there would be much more flexibility in automotive parts design.
Technical Paper

Silicon Nitride Swirl Lower-Chamber for High Power Turbocharged Diesel Engines

1985-02-01
850523
This paper describes application of sintered silicon nitride to the swirl lower-chamber in order to improve performance of turbocharged diesel engines. Various stress analyses by finite element method and stress measurements have been applied to determine the design specifications for the component, which compromise brittleness of ceramic materials. Material development was conducted to evaluate strength, fracture toughness, and thermal properties for the sintered bodies. Ceramic injection molding has been employed to fabricate components with large quantities in the present work. Quality assurance for the components can be made by reliability evaluation methods as well as non-destructive and stress loading inspections. It is found that the engine performance with ceramic component has been increased in the power out put of 9PS as compared to that of conventional engines.
Technical Paper

Precise Temperature Control for Molten Ferrous Alloy in Induction Furnace

1997-02-24
970376
A precise control system for a molten ferrous alloy temperature above 1700 K after the completion of induction melting has been developed in order to produce high quality casting parts for automobiles. In this system, the molten ferrous alloy temperature is measured just one time by a disposable thermocouple after the melting. The system predicts the temperature transition after the measurement using an original thermal model, and adjusts the supplied electric power to the furnace automatically according to the predicted temperature. Using this thermal model, the system has attained control deviations within ±5K under the following temperature controls, and contributed to the quality control of casting parts and the energy-saving during furnace operations. Casting temperature for a cast-steel of 1813 K in a 300 kg capacity high-frequency induction furnace on the “Toyota Vacuum Casting Process”.
Technical Paper

Nylon 6-Clay Hybrid - Synthesis, Properties and Application to Automotive Timing Belt Cover

1991-02-01
910584
ϵ-caprolactam was polymerized in the interlayer space of montmorillonite, the clay mineral yielding a nylon-clay hybrid (NCH). X-ray and TEM measurements revealed that each template of the silicate, which was 1 nm thick, was dispersed in the nylon 6 matrix, and that the interlayer distance of clay increased continuously from 1.2 nm for the unintercalated material to 21.4 nm for the intercalated material. Thus, NCH is a polymer-based molecular composite or a nano-composite. NCH contains 1-15 vol% of monolayer clay. Injection-molded NCH showed excellent mechanical properties compared with nylon 6 in terms of tensile strength, tensile modulus and heat resistance. The tensile modulus of NCH was twice that of Nylon 6, and the heat distortion temperature increased from 65°C for nylon 6 to 145°C for the NCH containing only 1.6 vol% of a clay mineral. It was found that such excellent properties of an NCH system was due to the strong ionic interaction between nylon 6 and the silicate layer.
Technical Paper

Numerical Simulation of Deactivation Process of Three-way Catalytic Converters

2000-03-06
2000-01-0214
This paper presents the numerical simulation method to predict the deactivation process of three-way catalytic converters. Three-way catalytic converter's deactivation typically results from thermal and chemical mechanisms. The major factor of thermal deactivation is the sintering of noble metal particles, which is known to depend on the ageing temperature and the oxygen concentration in the exhaust gas. The chemical deactivation is mainly caused by the poisoning, which has two effects on the catalyst deactivation. One effect is the loss of the catalyst activity, which is expressed by reduced frequency factors of reaction rates. Another effect is the suppression of the noble metal sintering. Poison deposits prevent the noble metal particles from moving in the washcoat, assisted by the reduced thermal loading of reaction heats, which is caused by the loss of the catalyst activity. Modeling these deactivation factors, we propose the rate expression of noble metal sintering.
Technical Paper

New Plastic Coloring and Forming System

1991-02-01
910363
This paper describes a new plastic coloring and forming system. The system greatly reduces the time and amount of raw materials necessary for color changes, and eliminates the need for manual cleaning during a color change. This system is well-suited for small-lot production with frequent color changes, as well as for automated production systems. The system is being used by auto parts makers, and is practical in a variety of other fields involved with the coloring and forming of plastics.
Technical Paper

MMC All Aluminum Cylinder Block for High Power SI Engines

2000-03-06
2000-01-1231
An all aluminum cylinder block with a Metal Matrix Composite (MMC) cylinder bore was developed which made it possible to re-design the base engine for high performance with a bore-to-bore distance as narrow as 5.5mm. The cylinder block is an open deck type and the MMC preform consists of alumina-silica fibers and mulite particles. A laminar flow die cast process was selected to ensure defect-free MMC bore quality. To insure good lubrication, electrochemical machining was applied to the bore surface. By use of radioisotope(RI) measurements, MMC reinforcement was optimized for wear characteristics. Particular attention was paid to use of fuels with high sulfur levels.
Technical Paper

High-Reliability Low-Cost Gold Plating Connector

1993-03-01
930426
The authors developed a high-reliability low-cost gold-plated connector for automobiles. The connector is covered with three plated layers, nickel, palladium-nickel alloy, and gold. The three-layer plating helps to reduce the required thickness of gold. This paper describes the reasons why palladium-nickel plating was adopted and compares the corrosion resistance, oxidation resistance and wear resistance of three-layer-plated materials with those of conventional gold-plated materials. In addition, the characterisitics of three-layer-plated connectors were compared with those of conventional gold-plated connectors. It was found that the reliability of three-layer-plated connectors was as high as that of conventional gold-plated connectors.
Technical Paper

Diagnostics Trends for Automotive Electronic Systems

2002-10-21
2002-21-0021
This paper is a study of the On-Board Diagnosis (OBD), a constituent element of the automotive electronic diagnosis system, together with its support functions. With regard to the OBD, we have listed and explained the principles of various diagnostic methods and their advantages and disadvantages. In addition, we have also commented on design factors and concepts. As to the support functions, nameiy diagnostics communication and diagnostic scan tool, drive recorder, and also IT, we have made recommendations on their future development in view of the functional division of roles with respect to the OBD in light of their respective characteristics.
Technical Paper

Development to Standardize PC System for the Automotive Industry

1984-02-01
840205
Recently, programmable controllers have been utilized for new equipment on production lines in the automobile industry. However, operators who must use these devices to carry out various operations face difficulties understanding the different methods for programming, ets. of these devices, and for handling the various types of peripheral equipment. In accordance with the increase in the number of PCs, CAD/CAM systems have become requisite for achieving high efficiency in sequence control design. However, poor PC standards prevent their development. In this paper, the development of PC systems, as well as methods for the elimination of problems with standardization, are described. The methods of standardization concern the methods of transmission between the PC and the peripheral equipment, the construction of peripheral equipment and the structure of data in the ladder diagram.
Technical Paper

Development of the Camshaft with Surface Remelted Chilled Layer

1986-10-01
861429
A camshaft for an automobile engine is generally made of chilled cast iron. But, because of increased demand for higher performance engines, a camshaft with many camshaft has been expected. The cam intervals were necessarily narrow. So it was difficult to manufacture the conventional chilled cast iron camshaft at a moderate price. In the case of a rocker-arm type valve mechanism, higher wear resistance was necessary. After due consideration to solve these problems, development of surface remelted chilled layer camshafts by Toyota's unique manufacturing method has been accomplished. In 1984 Toyota Motor Corporation started the mass-production of this camshaft, first for the new 1.0 liter 1E engine, and then for the 1.3 liter 2E engine. In this paper, the excellent wear resistance, the low manufacturing cost and the characteristic manufacturing method are described.
Technical Paper

Development of alloy cast iron for press die

2000-06-12
2000-05-0194
This paper describes the development of alloy cast iron that can be used for the cutting edges of the trimming die of a press die. Usually, a block of tool steel or steel casting is inserted at the cutting edge of the trimming die of a press die. However, we unified the structure part and the cutting-edge part of a press die with alloy cast iron. As it can''t bear as the cutting edge in this state, the cutting edge is processed by flame-hardening. After the flame- hardening, we developed the alloy cast iron so that enough hardness may be obtained by natural air cooling. Thereby, the machining of the installation seat of the cutting edge decreased and the expense of dies has been reduced.
Technical Paper

Development of a New Light-Weight Suspension Coil Spring

1993-03-01
930263
This newly developed helical spring can be used at a stress level up to 1300 MPa. The material is composed of Fe-C-Si-Mn-Ni-Cr-Mo-V alloy. Its strength-toughness balance was greatly superior to that of other spring steels. To improve the fatigue strength at a higher stress level, decarburization at the surface upon austenitizing was severely controlled, applying induction heating. Then, a special shot peening process, introduced for the first time, was applied to obtain a surface residual stress at the surface of over 1000 MPa. The spring was first applied to a 1992 TOYOTA model car. Plans are to increase the use since the spring material achieves a weight reduction of at least 30 % and, possibly, 35 to 40 %.
Technical Paper

Development of Three-way Catalyst Using Composite Alumina-Ceria-Zirconia

2003-03-03
2003-01-0811
To realize the high performance of the three-way catalyst, this development focused on the heat resistance of the CeO2-ZrO2 solid solution (CZ) that possesses the oxygen storage capacity (OSC). A new concept of the OSC compound with high durability is proposed. We devised a new method of inhibiting the coagulation of the primary CZ particles by placing diffusion barrier layers made of alumina among the primary CZ particles. This material is called “ACZ”. The specific surface area of ACZ was larger than that of the conventional CZ after durability test. The sintering of Pt on the ACZ-added catalyst is inhibited and the crystal size of CZ in the ACZ-added catalyst is smaller than that in the CZ-added catalyst. The OSC and the light off temperature of the ACZ-added catalyst are improved.
Technical Paper

Development of Sleeve Clinching Method and Making Practicable

1997-02-24
970372
We developed a fastening method to reduce noise levels and fastening work loads. The development was based on research into improved tools and fasteners. This was done in preparation for an increase in elderly worker and female worker population in the Automobile Assembly Shop. The principle of this method is to form female threads inside a straight sleeve by clinching the sleeve around a threaded bolt. We achieved improvements in component material clinching force and a durability for loosening torque compared to conventional bolt and nut methods.
Technical Paper

Development of Sintered Integral Camshaft

1983-02-01
830254
The camshaft for an automobile engine is generally made of chilled cast iron. Due to increasing demand for higher performance, lawer maintenance and better fuel economy, it is difficult to make the cast iron camshaft lighter and/or more durable. In order to overcome these problems, development of an integral camshaft comprised of a sintered alloy cam piece for better wear resistance and steel tube for weight saving has been accomplished. In 1981 Toyota Motor Corporation successively started the mass-production of the sintered intergral camshaft for the new 1.8 liter ls engine. The significant advantages are as follows; (1) Weight saving (2) Excellent wear resistance (3) Improvement of lubrication system (4) Saving machining cost
Technical Paper

Development of Pitting Resistant Steel for Gears

2006-04-03
2006-01-0895
Newly designed gears are subject to higher loads that demand a steel that is capable of greater pitting resistance. The application of shot peening to gears has been increasing to improve tooth root strength, but pitting resistance had not been necessarily high. This study examines the effect of alloying additions mainly on tempering resistance and the formation of a non-martensitic layer. The developed high Si-Mo type steel shows excellent pitting resistance, even in shot peened gears, as compared to that of conventional steels due to high tempering resistance and the thin, uniform non-martensitic layer. This new steel is of practical use in some multi-speed automatic transmission gears.
Technical Paper

Development of P/M Titanium Engine Valves

2000-03-06
2000-01-0905
In October 1998, a new mass-produced car with titanium engine-valves was released from TOYOTA Motor Corporation. Both intake and exhaust valves were manufactured via a newly developed cost-effective P/M forging process. Furthermore, the material which was specially designed for the exhaust one is a unique titanium metal matrix composite (MMC). This paper discusses the materials and manufacturing methods used. The tensile, fatigue strength and creep resistance of the MMC are always superior to those for the typical heat-resistant steel of 21-4N. Both valves have achieved sufficient durability and reliability with a manufacturing cost acceptable for mass-produced automobile parts.
Technical Paper

Development of Magnesium Steering Wheel

1991-02-01
910549
This paper describes the development of one-piece die cast magnesium steering wheel frame for a steering wheel incorporating an air bag system. The light weight magnesium frame was designed to have proper stiffness, strength and characteristics of energy absorption. Magnesium alloys with various aluminum contents were tested, and AM60B alloy was selected because of its favorable properties of strength and elongation. New manufacturing techniques, for example, a vacuum hot chamber die casting system and a surface defect inspection system were developed in order to produce high quality castings. The characteristics of energy absorption were evaluated in the laboratory and on actual vehicle crash test, and the results were satisfactory. The magnesium steering wheel frame is about 45% (550g) lighter than the steel one. It has been in production in Toyota passenger cars with driver side air bags.
X