Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
Journal Article

Study of the Prediction Method for Maximum Traction Coefficient

This report proposes a rheological model and a thermal analysis model for oil films, which transmit power through a variator, as a prediction method for the maximum traction coefficient, and then describes the application and verification of this method. The rheological model expresses the conditions inside the contact ellipse using a combination of viscosity and plasticity. The thermal analysis model for oil films was confirmed by comparison of previously obtained temperatures directly measured from the traction contact area of the four-roller experimental apparatus [1]. The measurement used a thin-film temperature sensor and the consistency between the calculated and measured values was verified in the estimation model by reflecting the precise thermal properties of the thin film. Most values were consistent with the calculated values for the middle plane local shear heating model inside the oil film.
Journal Article

Improvement of Temperature Prediction Method for Traction Contact

This report proposes a method of improving the temperature prediction model for traction drive contact portion in order to improve prediction accuracy of the maximum traction coefficient, and then describes verification of this method. In our previous report, a method of estimating the maximum traction coefficient by expressing conditions inside the contact ellipse using a simple combination of viscosity and plasticity was proposed. For the rise in oil film temperature, a calculation model is used that considers maximum temperature to be the typical value. Furthermore, a thin film temperature sensor technology was developed to directly measure the temperature of traction contact of a four-roller experimental apparatus and a variator in an actual transmission, and its validity was confirmed.