Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of CFD Method for Spray Shape Estimation

2016-10-17
2016-01-2198
Computational fluid dynamic (CFD) is widely used to develop engine combustion. Especially the in-cylinder spray calculation is important in order to resolve the issues of direct injection gasoline engines (e.g., particulate matter (PM) and oil dilution caused by fuel wetting on the cylinder walls). Conventional spray calculation methods require fitting based on measurements of spray characteristics such as penetration and droplet diameter (i.e., the Sauter mean diameter (SMD)). Particularly in the case of slit nozzle shapes that widen from the inlet to the outlet to form a fan-shaped spray, fitting the shape of spray is a complex procedure because the flow inside the nozzle is not uniform. In response, a new calculation method has been developed that eliminates the need for spray shape fitting by combining calculations of the Eulerian multiphase and the Lagrangian multiphase.
Technical Paper

Analysis of EGR Cyclic Variations in a Direct Injection Gasoline Engine by Using Raman Scattering Method

2002-05-06
2002-01-1646
The Raman scattering method has been developed for the simultaneous, cycle by cycle measurement of HC, O2, H2O, and N2 in a direct injection gasoline engine with EGR. By using the Raman scattering method, the effect of EGR on stratified charge combustion can be investigated in a direct injection SI gasoline engine. The results show that (1) at the compression stroke homogeneous EGR gas exists, (2) variation of component mass fraction of EGR (qualitative fluctuation) introduced in the previous combustion cycle is the primary reason for EGR fluctuation, (3) under normal operating conditions, EGR fluctuation (component mass fraction and quantitative fluctuation) doesn't influence on the combustion fluctuation at the stratified charge operation.
X