Refine Your Search



Search Results

Technical Paper

Vibration Reduction Applying Skew Phenomena of Needle Roller Bearings in Brake Actuators

Generally, automobiles have many performance requirements for comfort, of which noise, vibration and harshness are very important. Toyota Motor Corporation equipped several 2003 models with the second-generation Electronically Controlled Brake system (ECB2). These ECB2 actuator units adopted a new structure that reduced pumping noise by controlling the skew phenomena of needle roller bearings. Normally, needle roller bearings are advantageous over other bearings in cases where a large force is loaded on bearings, because the contact areas can be made larger. However, a thrust force arises from skew phenomena because of minute clearances among the component parts of needle roller bearings. As a result, axial vibration of the bearing shaft sometimes occurs due to the thrust force. This paper explains how the thrust force generated from the skew phenomena of needle roller bearings occasionally affects the pumping vibration level of equipped machinery such as the brake actuator unit.
Journal Article

Thermal Analysis of Traction Contact Area Using a Thin-film Temperature Sensor

The purpose of this paper is to construct the thermal analysis model by measuring and estimating the temperature at the traction contact area. For measurement of temperature, we have used a thin-film temperature sensor. For estimation of temperature, we have composed the thermal analysis model. The thin-film temperature sensor was formed on the contact surface using a spattering device. The sensor is constituted of three layers (sensor layer, insulation layer and intermediate layer). Dimensions of the sensor were sufficiently smaller than the traction contact area. The sensor featured high specific pressure capacity and high speed responsiveness. The thermal analysis model was mainly composed of three equations: Carslaw & Jaeger equation, Rashid & Seireg equation and heat transfer equation of shear heating in oil film. The heat transfer equation involved two models (local shear heating model at middle plane, homogeneous shear heating model).
Technical Paper

The Motor Control Technologies for High-Power Hybrid System

The Rx400h, which was put on the market in 2005, realized overwhelming power performance with the adoption of a high-voltage system, high-power output motor, and 3-motor type 4WD. Toyota has been working on a solution to increase the output power of the motor, i.e., the development of system stabilization technology. This paper introduces high-speed power balance control, which keeps the balance of power constant regardless of rapid changes in the number of motor rotations resulting from slipping tires or other factors, along with sensor error compensation control, which suppresses cyclic power fluctuation resulting from errors in the position sensor of the motor.
Technical Paper

The Advanced Sensor Fusion Algorithm for Pre-Crash Safety System

An obstacle recognition algorithm for the Pre-Crash Safety system has been newly developed with a stereo vision system and a millimeter wave radar with additional functions. This algorithm uses the merits of both the millimeter wave radar and the stereo vision system, and has two main features. One feature utilizes the merits of the stereo vision system detection with the detection results from the millimeter wave radar allowing for a more detailed horizontal position and width of the obstacle. This enables the equipment to operate at an earlier stage according to how well the relationship between the vehicle and the obstacle is understood. Another feature fuses detection from the millimeter wave radar and the stereo vision system. This system has succeeded in enhancing the detection performance of pedestrians who have been more difficult to detect than reflective objects such as cars.
Technical Paper

Stereo Vision System for Advanced Vehicle Safety System

In this paper, we will introduce a stereo vision system developed as a sensor for a vehicle's front monitor. This system consists of three parts; namely, a stereo camera that collects video images of the forward view of the vehicle, a stereo ECU that processes its output image, and a near-infrared floodlight for illuminating the front at night. We were able to develop an obstacle detection function for the Pre-Crash Safety System and also a traffic lane detection function for a Lane-Keeping Assist System. Especially in regard to the obstacle detection function, we were able to achieve real-time processing of the disparity image calculations that had formerly required long processing times by using two types of recently developed LSIs.
Technical Paper

Reduction of Longitudinal Vehicle Vibration Using In-Wheel Motors

This study analyzed the longitudinal vibration of a vehicle body and unsprung mass. Calculations and tests verified that longitudinal vibration can be reduced using in-wheel motors, which generate torque very quickly. Despite increasing demand for measures to enhance ride comfort considering longitudinal vibration, this type of vibration cannot be absorbed or controlled using a conventional suspension. This paper describes the reduction of vehicle longitudinal vibration that cannot be controlled by conventional actuators.
Technical Paper

Pre-Collision System for Toyota Safety Sense

Toyota Safety Sense is a safety system package developed to help drivers avoid accident types with a high frequency of occurrence. This paper deals with pre-collision system which forms the core of Toyota Safety Sense, especially Toyota Safety Sense P which uses a combined sensor configuration consisting of a monocular camera paired with millimeter wave radar, in order to achieve both high recognition performance and reliability. The use of a wide-angle monocular camera, millimeter wave radar integrated in the front grill emblem, and a collision determination algorithm for pedestrian targets enabled the development of a pre-collision system comprising detection capability of crossing pedestrians. Toyota has developed warning and pre-collision brake assist for driver to assist in avoiding a collision effectively; In addition, Pre-collision brake has achieved high level of performance for the drivers who cannot avoid a collision.
Technical Paper

Obstacle Detection Systems for Vehicle Safety

The increase in automobile accidents has heightened the awareness of safety in the general public, and serious safety measures have been pushed forward in various countries. Although those efforts have achieved a certain level of success, more effective methods are needed to cope with further increases of automobile ownership.Besides the collision safety, measures that prevent accidents or reduce the possibility of accidents will now be necessary to reduce the number of injuries.Here, we will present the current development status and issues for an obstacle recognition system that reduces the likelihood of accidents by utilizing radars and image sensors.
Technical Paper

New Drivetrain for Toyota's Flagship Lexus LFA Sports Car

Toyota Motor Corporation has developed a new drivetrain for their flagship Lexus LFA sports car. Passionate driving experience was pursued at the forefront of development. Superior vehicle performance, handling, and responsiveness that seem to anticipate the driver's intentions are achieved. Special vehicle packaging and component placement are adopted in the LFA in order to realize such performance. The engine, clutch, and front counter gear are positioned at the front of the vehicle, and the transaxle at the rear. The engine and transaxle are connected by a rigid torque tube. The transaxle is an automated manual transmission equipped with an electrohydraulic actuator for controlling both the shift and clutch operations. This actuator enables accurate control of the transmission and extremely quick response to shift paddle operation by the driver. This paper describes a general outline of the drivetrain and each component that has significantly contributed to LFA product appeal.
Journal Article

Multiplex Communication Protocol for Switch/Sensor/Actuator Network: “CXPI”

The growing functionality and complexity of recent vehicle electronic systems have made inter-device communication (on-board LAN) technology vital to vehicle design. By field of application, the LAN (Local Area Network) systems currently in use are LIN (Local Interconnect Network) used for body systems, CAN (Controller Area Network) used for control systems, and MOST (Media Oriented Systems Transport ) used for multimedia and camera systems, and work to standardize the next-generation communication technology for each of those fields is underway. This paper provides a technical overview of the CXPI (Clock Extension Peripheral Interface) communication protocol, which satisfies the body system requirements (rapid response, system extensibility, high reliability, and low cost). It also presents the progress made on standardization at SAE and other organizations.
Journal Article

Measurement of Oil Film Pressure in the Main Bearings of an Operating Engine Using Thin-Film Sensors

We developed a technique to measure oil film pressure distribution in engine main bearings using thin-film pressure sensors. The sensor is 7μm in thickness, and is processed on the surface of an aluminum alloy bearing. In order to increase the durability of the sensor, a layer of MoS2 and polyamide-imide was coated on thin-film sensors. This technique was applied to a 1.4L common-rail diesel engine operated at a maximum speed of 4,500r/min with a 100Nm full load, and the oil film pressure was monitored while the engine was operating. The measured pressure was compared with calculations based on hydrodynamic lubrication (HL) theory.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Journal Article

Improvement of Temperature Prediction Method for Traction Contact

This report proposes a method of improving the temperature prediction model for traction drive contact portion in order to improve prediction accuracy of the maximum traction coefficient, and then describes verification of this method. In our previous report, a method of estimating the maximum traction coefficient by expressing conditions inside the contact ellipse using a simple combination of viscosity and plasticity was proposed. For the rise in oil film temperature, a calculation model is used that considers maximum temperature to be the typical value. Furthermore, a thin film temperature sensor technology was developed to directly measure the temperature of traction contact of a four-roller experimental apparatus and a variator in an actual transmission, and its validity was confirmed.
Technical Paper

Development of a Scanning Laser Radar for ACC

This paper introduces the cruise control system with distance control function, that is called Adaptive Cruise Control (ACC), that uses a scanning laser radar as a sensor to detect preceding vehicles. With the goal of increasing the driving convenience and comfort when compared to the conventional cruise control, lots of ACC systems have been proposed and developed. This paper presents ACC system using the scanning laser radar which was developed by Toyota, and describes the adaptation of the system specifications. This ACC system was able to greatly reduce the driver's work load, and increased the driver's convenience and comfort when operating the cruise controls system. In addition, we were able to design this system to be highly dependable and inexpensive and supply it to the market as a result of incorporating various ideas for improvements.
Technical Paper

Development of a New Breath Alcohol Detector without Mouthpiece to Prevent Drunk Driving

Breath alcohol interlock systems are used in Europe and the U.S. for drunk driving offenders, and a certain effect has been revealed in the prevention of drunk driving. Nevertheless, problems remain to be solved with commercialized detectors, i.e., a person taking the breath alcohol test must strongly expire to the alcohol detector through a mouthpiece for every test, more over the determination of the breath alcohol concentration requires more than 5 seconds. The goal of this research is to develop a device that functions suitable and unobtrusive enough as the interlock system. For this purpose, a new alcohol detector, which does not require a long and hard blowing to the detector through a mouthpiece, has been investigated. In this paper, as a tool available on board, a contact free alcohol detector for the prevention of drunk driving has been developed.
Technical Paper

Development of Occupant Classification System

Introduction of occupant classification system which has load sensor with a strain gauge built into the seat structure, and identifies occupant's physique by measuring weight on seat, and meets the United States FMVSS requirements (new FMVSS208 Requirement).
Technical Paper

Development of High Accuracy and Quick Light-off NOx Sensor

For the purpose of coping with the strengthening of NOx exhaust gas control and fuel consumption control, it is indispensable to improve the NOx purification capacity. In view of this, vehicle manufacturers are in the course of developing high performance SCR (Selective Catalytic Reduction) systems [1, 2]. For such SCR systems to be realized, high precision NOx sensors for carrying out urea injection quantity control and SCR degradation diagnosis are absolutely indispensable. Detection of NOx concentration by means of a NOx sensor is generally performed as follows: O2 is discharged by means of an O2 detection electrode; remaining NOx is decomposed by a NOx detection electrode; NOx concentration is then detected as electric current that flows when oxygen ions are conduct through solid electrolyte. In order to detect NOx of ppm-order, it is necessary to detect minute current of nA-order with high accuracy.
Technical Paper

Development of Hall Effect Device Based Height Sensor

We have developed a Hall effect device based height sensor of a smaller size, and with higher temperature operation durability, as compared to conventional devices. Downsizing of the sensor is realized by decreasing a number of parts, and by employing a short bearing. Improvement in heat resistance is achieved by adopting an IC with sufficient heat resistance and a SmCo magnet with high coercive force. In addition, a sensor of a high degree of accuracy is accomplished by improvements in linearity and robustness of magnetic characteristics. Development of a small, heat-resistant and accurate height sensor will promote the spread of systems using a height sensor, such as a High Intensity Discharge (HID) headlamp.
Technical Paper

Development of Direct and Fast Response Gas Measurement

Due to regulations for even lower levels of pollutants in exhaust gas, development of advanced combustion techniques and increasingly efficient catalysts has become more crucial than ever. One of the essential technologies to achieve this goal is an advanced measurement method, which can detect the characteristics of exhaust gas, such as temperature and chemical compositions, in real-time to clarify their reaction mechanisms. A direct and fast response (1ms) measurement technique was developed based on diode laser absorption spectroscopy and applied to practical engine exhaust measurement to prove the validity of this technology for various applications such as clarification of engine start phenomena and improvement of EGR controls.
Technical Paper

Development of Automatic Braking System to Help Reduce Rear Impacts

A Rear Cross Traffic Auto Brake (RCTAB) system has been developed that uses radar sensors to detect vehicles approaching from the right or left at the rear of the driver’s vehicle, and then performs braking control if the system judges that a collision may occur. This system predicts the intersecting course of approaching vehicles and uses the calculated time-to-collision (TTC) to control the timing of automatic braking with the aim of helping prevent unnecessary operation while ensuring system performance.