Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

On-road Testing and Characterization of Fuel Economy of Light-Duty Vehicles

2005-04-11
2005-01-0677
The potential discrepancy between the fuel economy shown on new vehicle labels and that achieved by consumers has been receiving increased attention of late. EPA has not modified its labeling procedures since 1985. It is likely possible that driving patterns in the U.S. have changed since that time. One possible modification to the labeling procedures is to incorporate the fuel economy measured over the emission certification tests not currently used in deriving the fuel economy label (i.e., the US06 high speed and aggressive driving test, the SC03 air conditioning test and the cold temperature test). This paper focuses on the US06 cycle and the possible incorporation of aggressive driving into the fuel economy label. As part of its development of the successor to the MOBILE emissions model, the Motor Vehicle Emission Modeling System (MOVES), EPA has developed a physically-based model of emissions and fuel consumption which accounts for different driving patterns.
Technical Paper

Fuel Economy Improvements and NOx Reduction by Reduction of Parasitic Losses: Effect of Engine Design

2006-10-31
2006-01-3474
Reducing aerodynamic drag and tire rolling resistance in trucks using cooled EGR engines meeting EPA 2004 emissions standards has been observed to result in increases in fuel economy and decreases in NOx emissions. We report here on tests conducted using vehicles equipped a non-EGR engine meeting EPA 2004 emission standards and an electronically-controlled engine meeting EPA 1998 emissions standards. The effects of trailer fairings and single-wide tires on fuel economy and NOx emissions were tested using SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and by the gravimetric method specified by test procedure J1321. Fuel consumption decreased and fuel economy increased by a maximum of about 10 percent, and NOx emissions decreased by a maximum of 20 percent relative to baseline.
Technical Paper

Evaluation of Emission Control Technology Approaches for Heavy-Duty Gasoline Engines

1978-02-01
780646
This paper summarizes a laboratory effort toward reducing nine-mode cycle composite emissions and fuel consumption in a heavy-duty gasoline engine, while retaining current durability performance. Evaluations involved standard carburetors, a Dresserator inductor, a Bendix electronic fuel injection system, exhaust manifold thermal reactors, and exhaust gas recirculation, along with other components and engine operating parameters. A system consisting of electronic fuel injection, thermal reactors with air injection and exhaust gas recirculation, was assembled which met specified project goals. An oxidation catalyst was included as an add-on during the service accumulation demonstration. In addition, the driveability of this engine configuration was demonstrated.
Technical Paper

Emissions from Catalyst Cars Beyond 50 000 Miles and the Implications for the Federal Motor Vehicle Control Program

1978-02-01
780027
High mileage vehicles (in excess of 50,000 miles) contribute more than half of all vehicular emissions. With the new catalytic converter equipped cars, the proportional contribution of these vehicles may be even higher than for pre-catalyst vehicles. Thus a substantial portion of motor vehicle related air pollution may be caused by vehicles not subject to the manufacturer directed provisions of the Clean Air Act. This paper presents a modeling effort based on hypotheses and some preliminary data, and suggests some alternatives to combat this potential problem.
Technical Paper

Effect of Single Wide Tires and Trailer Aerodynamics on Fuel Economy and NOx Emissions of Class 8 Line-Haul Tractor-Trailers

2005-11-01
2005-01-3551
We hypothesize that components designed to improve fuel economy by reducing power requirements should also result in a decrease in emissions of oxides of nitrogen (NOx). Fuel economy and NOx emissions of a pair of class 8 tractor-trailers were measured on a test track to evaluate the effects of single wide tires and trailer aerodynamic devices. Fuel economy was measured using a modified version of SAE test procedure J1321. NOx emissions were measured using a portable emissions monitoring system (PEMS). Fuel consumption was estimated by a carbon balance on PEMS output and correlated to fuel meter measurements. Tests were conducted using drive cycles simulating highway operations at 55 mph and 65 mph and suburban stop-and-go traffic. The tests showed a negative correlation (significant at p < 0.05) between fuel economy and NOx emissions. Single wide tires and trailer aerodynamic devices resulted in increased fuel economy and decreased NOx emissions relative to the baseline tests.
Journal Article

Disassembly of Small Engine Catalytic Converters and Analysis of Washcoat Material for Platinum Group Metals by X-Ray Fluorescence Spectrometry

2014-06-02
2014-01-9078
The United States Environmental Protection Agency (U.S. EPA) National Enforcement Investigations Center (NEIC) has developed a test method for the analysis of washcoat material in small engine catalytic converters. Each small engine catalytic converter contains a metallic monolith. Each metallic monolith is removed from its outer casing, manually disassembled, and then separated into washcoat and substrate. The washcoat material is analyzed for platinum group metals (PGMs) using X-ray fluorescence (XRF) spectrometry. Results from the XRF analysis are used to calculate PGM ratios in the washcoat. During monolith disassembly, care is taken to minimize loss of washcoat or substrate, but some material is inevitably lost. The recovered washcoat mass does not necessarily equal the quantity of washcoat that was present in the intact catalytic converter.
Journal Article

Development of Greenhouse Gas Emissions Model (GEM) for Heavy- and Medium-Duty Vehicle Compliance

2015-09-29
2015-01-2771
In designing a regulatory vehicle simulation program for determining greenhouse gas (GHG) emissions and fuel consumption, it is necessary to estimate the performance of technologies, verify compliance with the regulatory standards, and estimate the overall benefits of the program. The agencies (EPA/NHTSA) developed the Greenhouse Gas Emissions Model (GEM) to serve these purposes. GEM is currently being used to certify the fuel consumption and CO2 emissions of the Phase 1 rulemaking for all heavy-duty vehicles in the United States except pickups and vans, which require a chassis dynamometer test for certification. While the version of the GEM used in Phase 1 contains most of the technical and mathematical features needed to run a vehicle simulation, the model lacks sophistication. For example, Phase 1 GEM only models manual transmissions and it does not include engine torque interruption during gear shifting.
Technical Paper

Detection of Catalyst Failure On-Vehicle Using the Dual Oxygen Sensor Method

1991-02-01
910561
On-vehicle proof-of-concept testing was conducted to evaluate the ability of the dual oxygen sensor catalyst evaluation method to identify serious losses in catalyst efficiency under actual vehicle operating conditions. The dual oxygen sensor method, which utilizes a comparison between an upstream oxygen sensor and an oxygen sensor placed downstream of the catalyst, was initially studied by the Environmental Protection Agency (EPA) under steady-state operating conditions on an engine dynamometer and reported in Clemmens, et al. (1).* At the time that study was released, questions were raised as to whether the technological concepts developed on a test fixture could be transferred to a vehicle operating under normal transient conditions.
Technical Paper

Catalysts for Methanol Vehicles

1987-11-01
872052
A Methanol catalyst test program has been conducted in two phases. The purpose of Phase I was to determine whether a base metal or lightly-loaded noble metal catalyst could reduce Methanol engine exhaust emissions with an efficiency comparable to conventional gasoline engine catalytic converters. The goal of Phase II was the reduction of aldehyde and unburned fuel emissions to very low levels by the use of noble metal catalysts with catalyst loadings higher than those in Phase I. Catalysts tested in Phase I were evaluated as three-way converters as well as under simulated oxidation catalyst conditions. Phase II catalysts were tested as three-way converters only. For Phase I, the most consistently efficient catalysts over the range of pollutants measured were platinum/rhodium configurations. None of the catalysts tested in Phase I were able to meet a NOx level of 1 gram per mile when operated in the oxidation mode.
Journal Article

Benchmarking a 2016 Honda Civic 1.5-Liter L15B7 Turbocharged Engine and Evaluating the Future Efficiency Potential of Turbocharged Engines

2018-04-03
2018-01-0319
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty (LD) automotive technologies to support the setting of appropriate national greenhouse gas (GHG) standards and to evaluate the impact of new technologies on in-use emissions, a 2016 Honda Civic with a 4-cylinder 1.5-liter L15B7 turbocharged engine and continuously variable transmission (CVT) was benchmarked. The test method involved installing the engine and its CVT in an engine-dynamometer test cell with the engine wiring harness tethered to its vehicle parked outside the test cell. Engine and transmission torque, fuel flow, key engine temperatures and pressures, and onboard diagnostics (OBD)/Controller Area Network (CAN) bus data were recorded.
Technical Paper

42 Catalytic Reduction of Marine Sterndrive Engine Emissions

2002-10-29
2002-32-1811
A 2001 General Motors 4.3 liter V-6 marine engine was baseline emissions tested and then equipped with catalysts. Emission reduction effects of exhaust gas recirculation (EGR) were also explored. Because of a U.S. Coast Guard requirement that inboard engine surface temperatures be kept below 200°F, the engine's exhaust system, including the catalysts, was water-cooled. Engine emissions were measured using the ISO-8178-E4 5-mode steady-state test for recreational marine engines. In baseline configuration, the engine produced 16.6 g HC+NOx/kW-hr, and 111 g CO/kW-hr. In closed-loop control with catalysts, HC+NOx emissions were reduced by 75 percent to 4.1 g/kW-hr, and CO emissions were reduced by 36 percent to 70 g/kW-hr of CO. The catalyzed engine was then installed in a Sea Ray 190 boat, and tested for water reversion on both fresh and salt water using National Marine Manufacturers Association procedures.
X