Refine Your Search

Topic

Author

Search Results

Technical Paper

Trends in Alternate Measures of Vehicle Fuel Economy

1986-10-01
861426
This paper develops and discusses the 1978-85 time trends in alternative measures of vehicle fuel economy. Nine alternative measures are presented ranging from ton-miles per gallon to menu-weighted performance adjusted miles per gallon. For each alternative measure, trends for important groups of manufacturers are presented. Ail of the trends in alternative measures are compared to the percent improvement implied by the original 1978 and 1985 passenger car average fuel economy standards (AFES).
Technical Paper

Toxicologically Acceptable Levels of Methanol and Formaldehyde Emissions from Methanol-Fueled Vehicles

1984-10-01
841357
The increased interest in use of methanol makes it important to determine what levels of methanol and formaldehyde emissions may be acceptable. This paper reviews the available health data for methanol and formaldehyde to define what approximate ranges of concentrations, termed ranges of concern, could be acceptable from a toxicological viewpoint. Air quality models are then used to predict the in-use fleet average exhaust emission levels in localized situations (heavily impacted by mobile sources) corresponding to these ranges of concern. Using predicted fleet compositions, approximate target emission levels are given for the light-duty portion of the fleet which could yield these fleet averages. Finally, there is a brief summary of available methanol and formaldehyde emissions data from neat methanol-fueled vehicles which are compared to the target levels.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

The Environmental Implications of Manganese as an Alternate Antiknock

1975-02-01
750926
Methylcyclopentadienylmanganese tricarbonyl (MMT) while originally marketed in the late 50's and early 60's as a secondary antiknock to leaded fuels, is presently being marketed as a primary antiknock targeted for the EPA required lead-free gasoline grade tailored for use in catalyst-equipped vehicles. This paper reviews and discusses new information related to the effect of manganese gasoline additives on the performance of catalysts, regulated emissions, and several currently unregulated emissions. In addition, estimates of human exposures to automotive-generated manganese particulate and the toxicological characteristics of manganese are discussed as they related to an assessment of the potential public health consequences should manganese additives come into widespread use. EPA's position regarding the use of manganese additives is presented and discussed.
Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
Video

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-06-18
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles ?with and without? the technologies being evaluated.
Journal Article

Teardown-Based Cost Assessment for Use in Setting Greenhouse Gas Emissions Standards

2012-04-16
2012-01-1343
The U.S. Environmental Protection Agency (EPA) contracted with FEV, Inc. to estimate the per-vehicle cost of employing selected advanced efficiency-improving technologies in light-duty motor vehicles. The development of transparent, reliable cost analyses that are accessible to all interested stakeholders has played a crucial role in establishing feasible and cost effective standards to improve fuel economy and reduce greenhouse gas (GHG) emissions. The FEV team, together with engineering staff from EPA's National Vehicle and Fuel Emissions Laboratory, and FEV's subcontractor, Munro & Associates, developed a robust costing methodology based on tearing down, to the piece part level, relevant systems, sub-systems, and assemblies from vehicles “with and without” the technologies being evaluated.
Technical Paper

Start Catalyst Systems Employing Heated Catalyst Technology for Control of Emissions from Methanol-Fueled Vehicles

1993-03-01
930382
EPA published the first results from evaluations of electrically heated catalyst (EHC) technology for light-duty automotive applications. Since then, a number of automakers, suppliers, and government agencies have published results from their heated catalyst development and evaluation programs. EPA has evaluated a number of start catalyst systems incorporating an EHC start catalyst followed by a larger, conventional main catalyst. These systems have proven very effective at reducing cold start related emissions from methanol vehicles at low mileage. This paper compares the results from several EHC + main catalyst evaluations conducted by EPA.
Technical Paper

Resistive Materials Applied to Quick Light-off Catalysts

1989-02-01
890799
The application of resistive materials as part of an exhaust emission control system is presented and discussed. The importance of cold start emissions is emphasized, and results are presented from experiments conducted with two different conductive materials. Most of the testing was conducted using methanol as the fuel, although some tests were run using gasoline-fueled vehicles.
Technical Paper

R-152a Refrigeration System for Mobile Air Conditioning

2003-03-03
2003-01-0731
In recent years, climate protection has become as important as ozone layer protection was in the late 1980's and early 1990s. Concerns about global warming and climate change have culminated in the Kyoto Protocol, a treaty requiring its signatories to limit their total emission of greenhouse gases to pre-1990 levels by 2008. The inclusion of hydrofluorocarbons (HFCs) as one of the controlled substances in the Kyoto Protocol has increased global scrutiny of the global warming impact of HFC-134a (called R-134a when used as a refrigerant), the current mobile air conditioning refrigerant. Industry's first response was to begin improving current R-134a systems to reduce leakage, reduce charge, and increase system energy efficiency, which in turn reduces tailpipe CO2 emissions. An additional option would be to replace the current R-134a with a refrigerant of lower global warming impact. This paper documents the use of another HFC, R-152a, in a mobile A/C system.
Technical Paper

Portable Emissions Measurement for Retrofit Applications – The Beijing Bus Retrofit Experience

2008-06-23
2008-01-1825
In 2005, the United States Environmental Protection Agency (EPA) and Southwest Research Institute (SwRI) embarked on a mission to help the city of Beijing, China, clean its air. Working with the Beijing Environmental Protection Bureau (BEPB), the effort was a pilot diesel retrofit demonstration program involving three basic retrofit technologies to reduce particulate matter (PM). The three basic technologies were the diesel oxidation catalyst (DOC), the flowthrough diesel particulate filter (FT-DPF), and the wallflow diesel particulate filter (WF-DPF). The specific retrofit systems selected for the project were verified through the California Air Resources Board (CARB) or the EPA verification protocol [1]. These technologies are generally verified for PM reductions of 20-40 percent for DOCs, 40-50 percent for the FT-DPF, and 85 percent or more for the high efficiency WF-DPF.
Technical Paper

Performance of Sequential Port Fuel Injection on a High Compression Ratio Neat Methanol Engine

1987-11-01
872070
A Sequential fuel injection system was fitted to a 2 liter Nissan NAPS-Z engine that had been modified for neat methanol operation. The specific modifications for high compression operation with neat methanol are described, and baseline brake thermal efficiency and engine out emissions are established. Sequential injection operation on neat methanol included varying the beginning of injection between 50°BTDC and 250°ATDC over an equivalence ratio of 0.6 to 0.9. Efficiency and emission results with the Sequential system are compared to those from the base system and from selected references. For the low speed, steady state conditions used in this program, the Sequential system did not show any general improvement in efficiency or emissions. This result is directionally opposite to that observed in one reference. The apparent cause for the divergent results is the absence of mechanisms in this experiment to prevent mixing along the cylinder axis.
Technical Paper

Performance of Partial Flow Sampling Systems Relative to Full Flow CVS for Determination of Particulate Emissions under Steady-State and Transient Diesel Engine Operation

2002-05-06
2002-01-1718
The use of a partial flow sampling system (PFSS) to measure nonroad steady-state diesel engine particulate matter (PM) emissions is a technique for certification approved by a number of regulatory agencies around the world including the US EPA. Recently, there have been proposals to change future nonroad tests to include testing over a nonroad transient cycle. PFSS units that can quantify PM over the transient cycle have also been discussed. The full flow constant volume sampling (CVS) technique has been the standard method for collecting PM under transient engine operation. It is expensive and requires large facilities as compared to a typical PFSS. Despite the need for a cheaper alternative to the CVS, there has been a concern regarding how well the PM measured using a PFSS compared to that measured by the CVS. In this study, three PFSS units, including AVL SPC, Horiba MDLT, and Sierra BG-2 were investigated in parallel with a full flow CVS.
Technical Paper

Passenger Car Fuel Economy… Trends Through 1984

1984-02-01
840499
This the twelfth in a series of Papers on trends in EPA fuel economy, concentrates as usual on the current Model Year (1984). Final Corporate Average Fuel Economy (CAFE) production volumes and MPG figures have been used to update the data bases through the 1982 Model Year. This paper is different from earlier papers in four ways: 1) manufacturer-supplied production forecasts have been adjusted for both model years 1983 and 1984. 2) sales weighted MPG values at the nameplate level of aggregation are presented. 3) much of the analysis is stratified at the Domestic/European/Japanese manufacturer level, and 4) fuel economy analysis for Light Duty Trucks is not included. Conclusions are presented on the trends in fuel economy of the fleet as a whole and for various classes of vehicles.
Technical Paper

Operating Characteristics of Zirconia Galvanic Cells (Lambda Sensors) in Automotive Closed-Loop Emission Control Systems

1992-02-01
920289
Simple tests were performed to investigate the operating characteristics of zirconia galvanic cells (lambda sensors) in automotive closed loop “three-way” emission control systems. Commercially available cells were exposed to typical gaseous components of exhaust gas mixtures. The voltages generated by the cells were at their maximum values when hydrogen, and, in some instances, carbon monoxide, was available for reaction with atmospheric oxygen that migrated through the cells' ceramic thimbles in ionic form. This dependence of galvanic activity on the availability of these particular reducing agents indicated that the cells were voltaic devices which operated as oxidation/reduction reaction cells, rather than simple oxygen concentration cells.
Technical Paper

On-road Testing and Characterization of Fuel Economy of Light-Duty Vehicles

2005-04-11
2005-01-0677
The potential discrepancy between the fuel economy shown on new vehicle labels and that achieved by consumers has been receiving increased attention of late. EPA has not modified its labeling procedures since 1985. It is likely possible that driving patterns in the U.S. have changed since that time. One possible modification to the labeling procedures is to incorporate the fuel economy measured over the emission certification tests not currently used in deriving the fuel economy label (i.e., the US06 high speed and aggressive driving test, the SC03 air conditioning test and the cold temperature test). This paper focuses on the US06 cycle and the possible incorporation of aggressive driving into the fuel economy label. As part of its development of the successor to the MOBILE emissions model, the Motor Vehicle Emission Modeling System (MOVES), EPA has developed a physically-based model of emissions and fuel consumption which accounts for different driving patterns.
Technical Paper

Modeling and Controls Development of 48 V Mild Hybrid Electric Vehicles

2018-04-03
2018-01-0413
The Advanced Light-Duty Powertrain and Hybrid Analysis tool (ALPHA) was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types combined with different powertrain technologies. The ALPHA desktop application was developed using MATLAB/Simulink. The ALPHA tool was used to evaluate technology effectiveness and off-cycle technologies such as air-conditioning, electrical load reduction technology and road load reduction technologies of conventional, non-hybrid vehicles for the Midterm Evaluation of the 2017-2025 LD GHG rule by the U.S. Environmental Protection Agency (EPA) Office of Transportation and Air Quality (OTAQ).
Technical Paper

Light Duty Automotive Trends Through 1986

1986-04-01
860366
This, the fourteenth in this series of papers, examines trends in fuel economy, technology usage and estimated 0 to 60 MPH acceleration time for model year 1986 passenger cars. Comparisons with previous year's data are made for the fleet as a whole and using three measures of vehicle/engine size: number of cylinders, EPA car class, and inertia weight class. Emphasis on vehicle performance and fuel metering has been expanded and analysis of individual manufacturers has been deemphasized; comparisons of the Domestic, European, and Japanese market sectors are given increased emphasis.
Technical Paper

Light Duty Automotive Fuel Economy… Trends thru 1983

1983-02-01
830544
This, the eleventh in a series of Papers on EPA fuel economy trends, emphasizes the current Model Year (1983) as usual, but also gives increased emphasis to trends in vehicle technology, including catalyst and transmission subclasses. Final “CAFE”* production volumes and MPG figures have been used to update the data bases through the 1980 Model Year, and an analytic method used in the past to allocate year-to-year fleet MPG changes to specific causes, such as weight mix shifts, has been reinstituted. Conclusions are presented on the relation between fuel economy and emission standards, catalyst types, and transmission types.
X