Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Two Phase Thermal Energy Management System

2011-10-18
2011-01-2584
The Air Force Research Laboratory (AFRL), in cooperation with the University of Dayton Research Institute (UDRI) and Fairchild Controls Corporation, is building a test facility to study the use of advanced vapor cycle systems (VCS) in an expanded role in aircraft thermal management systems (TMS). It is dedicated to the study and development of VCS control and operation in support of the Integrated Vehicle ENergy Technology (INVENT) initiative. The Two Phase Thermal Energy Management System (ToTEMS1) architecture has been shown through studies to offer potential weight, cost, volume and performance advantages over traditional thermal management approaches based on Air Cycle Systems (ACS). The ToTEMS rig will be used to develop and demonstrate a control system that manages the system capacity over both large amplitude and fast transient changes in the system loads.
Technical Paper

Source Management of Aircraft Electrical Power Systems with Hardware in the Loop Verification

2017-09-19
2017-01-2034
Future aircraft will demand a significant amount of electrical power to drive primary flight control surfaces. The electrical system architecture needed to source these flight critical loads will have to be resilient, autonomous, and fast. Designing and ensuring that a power system architecture can meet the load requirements and provide power to the flight critical buses at all times is fundamental. In this paper, formal methods and linear temporal logic are used to develop a contactor control strategy to meet the given specifications. The resulting strategy is able to manage multiple contactors during different types of generator failures. In order to verify the feasibility of the control strategy, a real-time simulation platform is developed to simulate the electrical power system. The platform has the capability to test an external controller through Hardware in the Loop (HIL).
Journal Article

Integrated Power and Thermal Management System (IPTMS) Demonstration Including Preliminary Results of Rapid Dynamic Loading and Load Shedding at High Power

2015-09-15
2015-01-2416
An IPTMS hardware facility has been established in the laboratories of the Aerospace Systems Directorate of the Air Force Research Laboratory (AFRL) at Wright-Paterson Air Force Base (WPAFB). This hardware capability was established to analyze the transient behavior of a high power Electrical Power System (EPS) coupled virtually to a Thermal Management System (TMS) under fast dynamic loading conditions. The system incorporates the use of dynamic electrical load, engine emulation, energy storage, and emulated thermal loads operated to investigate dynamics under step load conditions. Hardware architecture and control options for the IPTMS are discussed. This paper summarizes the IPTMS laboratory demonstration system, its capabilities, and preliminary test results.
Technical Paper

Integrated Engine/Thermal Architecture Model Interface Development

2011-10-18
2011-01-2585
Integrated system-level analysis capability is critical to the design and optimization of aircraft thermal, power, propulsion, and vehicle systems. Thermal management challenges of modern aircraft include increased heat loads from components such as avionics and more-electric accessories. In addition, on-going turbine engine development efforts are leading to more fuel efficient engines which impact the traditionally-preferred heat sink - engine fuel flow. These conditions drive the need to develop new and innovative ways to manage thermal loads. Simulation provides researchers the ability to investigate alternative thermal architectures and perform system-level trade studies. Modeling the feedback between thermal and engine models ensures more accurate thermal boundary conditions for engine air and fuel heat sinks, as well as consideration of thermal architecture impacts on engine performance.
Journal Article

Electrical Accumulator Unit for the Energy Optimized Aircraft

2008-11-11
2008-01-2927
The movement to more-electric architectures during the past decade in military and commercial airborne systems continues to increase the complexity of designing and specifying the electric power system. In particular, the electrical power system (EPS) faces challenges in meeting the highly dynamic power demands of advanced power electronics based loads. This paper explores one approach to addressing these demands by proposing an electrical equivalent of the widely utilized hydraulic accumulator which has successfully been employed in hydraulic power system on aircraft for more than 50 years.
Technical Paper

Cycle-Based Vapor Cycle System Control and Active Charge Management for Dynamic Airborne Applications

2014-09-16
2014-01-2224
Numerous previous studies have highlighted the potential efficiency improvements which can be provided to aircraft thermal management systems by the incorporation of vapor cycle systems (VCS), either in place of, or in conjunction with, standard air cycle systems, for providing the needed thermal management for aircraft equipment and crews. This paper summarizes the results of a cycle-based VCS control architecture as tested using the Vapor Cycle System Research Facility (VCSRF) in the Aerospace Systems Directorate of the Air Force Research Laboratory at Wright-Patterson Air Force Base. VCSRF is a flexible, dynamic, multi-evaporator VCS which incorporates electronic expansion valves and a variable speed compressor allowing the flexibility to test both components and control schemes. The goal of this facility is to reduce the risk of incorporating VCS into the thermal management systems (TMS) of future advanced aircraft.
Technical Paper

An Integrated Chemical Reactor-heat Exchanger based on Ammonium Carbamate

2012-10-22
2012-01-2190
In this work we present our recent effort in developing a novel heat exchanger based on endothermic chemical reaction (HEX reactor). The proposed HEX reactor is designed to provide additional heat sink capability for aircraft thermal management systems. Ammonium carbamate (AC) which has a decomposition enthalpy of 1.8 MJ/kg is suspended in propylene glycol and used as the heat exchanger working fluid. The decomposition temperature of AC is pressure dependent (60°C at 1 atmosphere; lower temperatures at lower pressures) and as the heat load on the HEX increases and the glycol temperature reaches AC decomposition temperature, AC decomposes and isothermally absorbs energy from the glycol. The reaction, and therefore the heat transfer rate, is controlled by regulating the pressure within the reactor side of the heat exchanger. The experiment is designed to demonstrate continuous replenishment of AC.
Technical Paper

A Multi-Domain Component Based Modeling Toolset for Dynamic Integrated Power and Thermal System Modeling

2019-03-19
2019-01-1385
Design of modern aircraft relies heavily on modeling and simulation for reducing cost and improving performance. However, the complexity of aircraft architectures requires accurate modeling of dynamic components across many subsystems. Integrated power and thermal modeling necessitates dynamic simulations of liquid, air, and two-phase fluids within vapor cycle system components, air cycle machine and propulsion components, hydraulic components, and more while heat generation of many on-board electrical components must also be precisely calculated as well. Integration of these highly complex subsystems may result in simulations which are too computationally expensive for quickly modeling extensive variations of aircraft architecture, or will require simulations with reduced accuracy in order to provide computationally inexpensive models.
Journal Article

A MATLAB Simulink Based Co-Simulation Approach for a Vehicle Systems Model Integration Architecture

2020-03-10
2020-01-0005
In this paper, a MATLAB-Simulink based general co-simulation approach is presented which supports multi-resolution simulation of distributed models in an integrated architecture. This approach was applied to simulating aircraft thermal performance in our Vehicle Systems Model Integration (VSMI) framework. A representative advanced aircraft thermal management system consisting of an engine, engine fuel thermal management system, aircraft fuel thermal management system and a power and thermal management system was used to evaluate the advantages and tradeoffs in using a co-simulation approach to system integration modeling. For a system constituting of multiple interacting sub-systems, an integrated model architecture can rapidly, and cost effectively address technology insertions and system evaluations. Utilizing standalone sub-system models with table-based boundary conditions often fails to effectively capture dynamic subsystem interactions that occurs in an integrated system.
Journal Article

A Direct Torque-Controlled Induction Machine Bidirectional Power Architecture for More Electric Aircraft

2009-11-10
2009-01-3219
The performance of a more-electric aircraft (MEA) power system electrical accumulator unit (EAU) architecture consisting of a 57000 rpm induction machine (IM) coupled to a controllable shaft load and controlled using direct torque control (DTC) is examined through transient modeling and simulation. The simplicity and extremely fast dynamic torque response of DTC make it an attractive choice for this application. Additionally, the key components required for this EAU system may already exist on certain MEA, therefore allowing the benefits of EAU technology in the power system without incurring a significant weight penalty. Simulation results indicate that this architecture is capable of quickly tracking system bus power steps from full regenerative events to peak load events while maintaining the IM's speed within 5% of its nominal value.
X