Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

New Platinum/Palladium Based Catalyzed Filter Technologies for Future Passenger Car Applications

2007-04-16
2007-01-0234
Catalyzed diesel particulate filter systems have now been successfully introduced and implemented in Europe. In the meantime, automotive manufacturers are working on the second generation of catalytic filters with the aim of reducing the overall system costs. In particular savings in precious metal costs are focussed by the use of highly-active catalysts which are stable at high temperatures. A possible approach here is the implementation of oxidation catalysts and catalytically coated filters based on platinum and palladium. In this context, the functio-nality of platinum/palladium-based, catalyzed filters was investigated by numerous measurements on a synthetic gas and an engine bench as well as by vehicle tests on a roller dynamometer. The HC/CO oxidation activity, the poisoning resistance towards sulfur and the desulfurization capability, the exothermic behaviour due to the conversion of subsequently injected hydrocarbons and the NO2 formation potential were examined in detail.
Technical Paper

NOx-Storage Catalyst Systems Designed to Comply with North American Emission Legislation for Diesel Passenger Cars

2006-04-03
2006-01-1369
In this paper we report on a new state of the art diesel LNT (Lean NOx Trap) formulation that is designed to comply with North American emission legislation for diesel passenger cars. Improved performance and durability is demonstrated in an aging study using hydrothermal furnace aging and a prolonged procedure behind the engine consisting of repeated cycles containing sulfur exposure, desulfation and simulated regeneration of a diesel particulate filter. The improved barium based technology shows an increased thermal stability in terms of upper not-to-exceed temperature of at least 50°C. Our data show that potassium based technologies can represent a viable solution for certain applications that require extremely high NOx-conversions at temperatures above 500°C. Potassium based technologies with improved anchoring of the alkali metal show significant reduction in potassium loss to the exhaust gas.
Technical Paper

Impact of European Real-Driving-Emissions Legislation on Exhaust Gas Aftertreatment Systems of Turbocharged Direct Injected Gasoline Vehicles

2017-03-28
2017-01-0924
Recently, the European Union has adopted a new regulation on Real-Driving-Emissions (RDE) and also China is considering RDE implementation into new China 6 legislation. The new RDE regulation is focused on measuring nitrogen oxides (NOx) and particulate number (PN) emissions of both light-duty gasoline and diesel vehicles under real world conditions. A supplemental RDE test procedure was developed for European type approval, which includes on-road testing with cars equipped with portable emission measurement systems (PEMS). This new regulation will significantly affect the engine calibrations and the exhaust gas aftertreatment. In this study the impact of the new RDE regulation on two recent EU 6b certified turbocharged direct injected gasoline vehicles has been investigated. A comparison of several chassis dyno drive cycles with two new defined on-road RDE cycles was performed.
Technical Paper

Impact of Aging and NOX/Soot Ratio on the Performance of a Catalyzed Particulate Filter for Heavy Duty Diesel Applications

2005-04-11
2005-01-0663
Particulate filters are currently the method of choice for reducing soot levels in diesel exhaust to the extremely low levels required for meeting future emission standards. For cost effective, reliable and manageable soot regeneration, the Catalytic Diesel Particulate Filter (CDPF) has proven to be one of the most promising solutions for maintaining filter performance. The activity of the CDPF can help lower soot ignition temperature thereby promoting active, oxygen-based filter regeneration. It can also facilitate passive regeneration of a filter at temperatures below 400 °C through formation of NO2 by catalyzing the oxidation of NO. There are two important factors which affect the passive regeneration of a CDPF. One is the influence of NOX/soot ratio. The other is the deterioration of the catalytic function upon aging. Together they determine the quantity of NO2 available for soot oxidation.
Technical Paper

Evaluation of Advanced Diesel Oxidation Catalyst Concepts: Part 2

2006-04-03
2006-01-0032
The development of diesel powered passenger cars is driven by the enhanced emission legislation. To fulfill the future emission limits there is a need for advanced aftertreatment devices. A comprehensive study was carried out focusing on the improvement of the DOC as one part of these systems, concerning high HC/CO conversion rates, low temperature light-off behaviour and high temperature aging stability, respectively. The first part of this study was published in [1]. Further evaluations using a high temperature DPF aging were carried out for the introduced systems. Again the substrate geometry and the catalytic coating were varied. The results from engine as well as vehicle tests show advantages in a highly systematic context by changing either geometrical or chemical factors. These results enable further improvement for the design of the exhaust system to pass the demanding emission legislation for high performance diesel powered passenger cars.
Technical Paper

Dynamic Model for the Selective Catalytic Reduction of NO with NH3 on Fe-Zeolite Catalysts

2008-04-14
2008-01-1323
Future NOx-emission standards for diesel engines imply an after treatment system, e.g. in the form of an NH3-SCR system. For the technical realization a sound understanding of the catalytic processes is mandatory. To gain this knowledge a model of the SCR of NO with NH3 on Fe zeolite catalysts has been developed on the basis of a transient test cycle. The model is able to map the performance of the catalyst both under steady state and transient conditions. As practical examples the model is used to parameterize lookup tables and to compare different formats of lookup tables in terms of suitability for a urea dosage system.
Technical Paper

Different Properties of Biodiesel in Comparison with Standard Diesel Fuel and their Impact on EURO VI Exhaust Aftertreatment Systems

2012-09-10
2012-01-1733
The use of fatty acid methyl esters (FAME), often referred to as biodiesel, instead of fossil diesel fuel is under consideration in order to increase the share of fuels from renewable sources and to reduce greenhouse gas emissions. In Europe, commercial diesel fuels already contain up to 7% biodiesel. Higher biodiesel blends or the use of pure biodiesel are probable measures to further increase the share of fuels from renewable sources. Due to its different feedstock and refining process, the specification of biodiesel reveals some important distinctions in comparison with standard diesel fuel. The current work aims to discuss the possible implications of biodiesel utilization on the aftertreatment systems of recent heavy-duty diesel (HDD) vehicles compliant with EURO VI legislation. In particular, the effect of biodiesel on heat-up operation, i.e., the increase of the exhaust gas temperature by catalytic combustion of fuel within a diesel oxidation catalyst (DOC), is investigated.
Technical Paper

Diesel SCR NOx Reduction and Performance on Washcoated SCR Catalysts

2004-03-08
2004-01-1293
This paper describes a study of ternary V2O5/WO3/TiO2 SCR catalysts coated on standard Celcor® and new highly porous cordierite substrates. At temperatures below 275°C, where NOx conversion is kinetically limited, high catalyst loadings are required to achieve high conversion efficiencies. In principle there are two ways to achieve high catalyst loadings: 1. On standard Celcor® substrates the washcoat thickness can be increased. 2. With new highly porous substrates a high amount of washcoat can be deposited in the walls. Various catalyst loadings varying from 120g/l to 540 g/l were washcoated on both standard Celcor® and new high porosity cordierite substrates with standard coating techniques. Simulated laboratory testing of these samples showed that high catalyst loadings improved both low temperature conversion efficiency and high temperature ammonia storage capacity and consequently increased the overall conversion efficiency.
Technical Paper

Diesel NOx-Storage Catalyst Systems for Tier 2 BIN5 Legislation

2008-04-14
2008-01-0766
NOx storage catalyst systems (or lean NOx trap, LNT) will most likely play an important role in meeting the future global Diesel emission standards. DaimlerChrysler introduced in 2006 the E 320 BLUETEC Diesel, which represents the first Clean Diesel car with NOx storage catalysts in North America [1]. The vast number of different applications result in a wide spectrum of different operating conditions for the LNT systems. Each of those different environments requires a fine-tuning of the catalyst's properties, particularly sulfur release properties and thermal durability. High average exhaust temperatures typical for a placement close to the engine require high thermal durability. Higher desulfation temperatures are acceptable in such a case since those temperatures are easier to achieve in such a configuration.
Technical Paper

Comprehensive Gasoline Exhaust Gas Aftertreatment, an Effective Measure to Minimize the Contribution of Modern Direct Injection Engines to Fine Dust and Soot Emissions?

2014-04-01
2014-01-1513
With the growing awareness about the presence of fine/ultra fine particulates in the ambient air and their negative impact on climate and health, some regions of the world have started to look closer at the contribution of road traffic. Since Gasoline engines, in particular when injecting fuel directly into the combustion chamber, proved to emit relevant numbers of particulates, even hardly visible, the growing share of Gasoline DI engines and their small size of particulate emissions is a concern. To address the same, the EU has already set limits for the particulate number with EU6 from 2015 onwards. The US considers setting challenging limits by particulate mass. Since mass of ultra fine particulates is very low and difficult to measure, experts investigate if a measurement by number might better address the particular concern. The implementation of a coated Particulate Filter enables meeting not only basic demands during traditional emission test cycles.
Technical Paper

Catalyst Design for High Performance Engines Capable to Fulfill Future Legislation

2004-03-08
2004-01-1276
To meet future emission levels the industry is trying to reduce tailpipe emissions by both, engine measures and the development of novel aftertreatment concepts. The present study focuses on a joint development of aftertreatment concepts for gasoline engines that are optimized in terms of the exhaust system design, the catalyst technology and the system costs. The best performing system contains a close-coupled catalyst double brick arrangement using a new high thermal stable catalyst technology with low precious metal loading. This system also shows an increased tolerance against catalyst poisoning by engine oil.
Technical Paper

A Diesel Passenger Car Euro V Compliant System for India

2011-01-19
2011-26-0029
With the implementation of Euro V emissions legislation in 2010, the vast majority of light-duty diesel vehicles now employ a diesel particulate filter. The expansion of the Diesel Euro V standard outside Europe is inhibited in part by the low availability of ≺50 ppm sulfur fuel. Having said this, countries such as India and China have ≺50 ppm sulfur fuel available in many urban centers today, with the geographical area covered growing each year. Whilst it is well known that diesel DPF applications require ≺50 ppm sulfur fuel for optimum long-term operation, the ability of the system to withstand periodic "high" sulfur events would be a useful enabler for the early implementation of Euro V legislation to these markets. In this paper, the authors set out to assess the capability of the DOC and cDPF exhaust gas aftertreatment system to cope with periodic high sulfur fuel events.
X