Refine Your Search

Topic

Author

Search Results

Technical Paper

Zero Prototype Approach in the Development of a Plastic Automotive Component

2004-11-16
2004-01-3300
In the developement process, the engineer is required to design, validate and deliver the components for manufacturing, in an as short as possible lead time. For that, the engineer may use some available tools to save not only time, but also cost. This work presents a zero prototype approach applyied to a plastic component, whose main accomplishment was the decreasing of lead time development due to the intensive use of virtual tools (CAD/CAE). As a result, the product was delivered in a short time, with no need of building physical prototypes, thus reducing development cost.
Technical Paper

Wavelet-Based Visualization, Separation, and Synthesis Tools for Sound Quality of Impulsive Noises

2003-05-05
2003-01-1527
Recent applied mathematics research on the properties of the invertible shift-invariant discrete wavelet transform has produced new ways to visualize, separate, and synthesize impulsive sounds, such as thuds, slaps, taps, knocks, and rattles. These new methods can be used to examine the joint time-frequency characteristics of a sound, to select individual components based on their time-frequency localization, to quantify the components, and to synthesize new sounds from the selected components. The new tools will be presented in a non-mathematical way illustrated by two real-life sound quality problems, extracting the impulsive components of a windshield wiper sound, and analyzing a door closing-induced rattle.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Technical Paper

Vehicle Cascade & Target Response Analysis (VeCTRA) is an Excel Based Tool Used for the Idle NVH Target Cascade Process

2003-05-05
2003-01-1434
Recent trends show a growing demand for improved powertrain noise and vibration quality. In particular, there is little customer acceptance of vibration and noise (“boom”) at engine idle speeds. CAE analysis is being used increasingly as an aid for reducing overall vehicle level responses. Traditionally, analytical idle response is evaluated for only one particular engine order at a time. An efficient Excel based tool called VeCTRA (Vehicle Cascade & Target Response Analysis) was developed to accurately assess the effects of multiple powertrain orders on the vehicle level idle response. VeCTRA is capable of predicting the overall vehicle level response (tactile and acoustic) as well as determining the contribution from each engine order and the specific component excitations within an order. VeCTRA is capable of using analytical or experimentally measured sensitivity and/or excitation data.
Journal Article

Using an Assembly Sequencing Application to React to a Production Constraint: a Case Study

2017-03-28
2017-01-0242
Ford Motor Company’s assembly plants build vehicles in a certain sequence. The planned sequence for the plant’s trim and final assembly area is developed centrally and is sent to the plant several days in advance. In this work we present the study of two cases where the plant changes the planned sequence to cope with production constraints. In one case, a plant pulls ahead two-tone orders that require two passes through the paint shop. This is further complicated by presence in the body shop area of a unidirectional rotating tool that allows efficient build of a sequence “A-B-C” but heavily penalizes a sequence “C-B-A”. The plant changes the original planned sequence in the body shop area to the one that satisfies both pull-ahead and rotating tool requirements. In the other case, a plant runs on lean inventories. Material consumption is tightly controlled down to the hour to match with planned material deliveries.
Technical Paper

Using Dimensional Analysis to Build a Better Transfer Function

2004-03-08
2004-01-1129
A key ingredient in designing products that are more robust is a thorough knowledge of the physics of the ideal function of those products and the physics of the failure modes of those products. We refer to the mathematical functions describing this physics as the transfer functions for that product. Dimensional analysis (DA) is a well known, but often overlooked, tool for reducing the number of experiments needed to characterize a physical system. In this paper, we demonstrate how the application of DA can be used to reduce the size of a DOE needed to estimate transfer functions experimentally. Furthermore, the transfer function generated using DOEs with DA tend to be more general than those generated using larger DOEs directly on the design parameters. With ever-increasing competitive pressure and reduced product development time, a tool such as DA, which can dramatically reduce experimental cost, is an incredibly valuable addition to an engineers toolbox.
Technical Paper

Transient CFD Simulations of a Bell Sprayer

1998-09-29
982291
A methodology is developed that incorporates high resolution CFD flowfield information and a particle trajectory simulation, aimed at addressing Paint Transfer Efficiency (PTE) for bell sprayers. Given a solid model for the bell sprayer, the CFD simulation, through automeshing, determines a high resolution Cartesian volume mesh (14-20 million cells). With specified values of the initial shaping air, transient and steady-state flow field information is obtained. A particle trajectory visualization tool called SpraySIM uses this complicated flowfield information to determine the particle trajectories of the paint particles under the influence of drag, gravity and electrostatic potential. The sensitivity of PTE on shaping air velocity, charge-to-mass ratio, potential, and particle diameter are examined.
Technical Paper

The Use of a Modified S.A.E. H-Point Machine in Assembly Plants

1977-02-01
770252
As part of a continuing Ford Motor Company program to improve the seating packages of production cars, a simplified in-plant method was developed to check seating variations in production vehicles. The method also provided information helpful in determining causal factors when any irregularities were found. Equipment necessary for checking was designed to be easily transported to any site.
Technical Paper

The Use of Discrete Wavelet Transform in Road Loads Signals Compression

2009-10-06
2009-36-0238
Wavelets are a powerful mathematical tool used to multi-resolution time-frequency decomposition of signals, in order to analyze them in different scales and obtain different aspects of the information. Despite being a relatively new tool, wavelets have being applied in several areas of human knowledge, especially in signal processing, with emphasis in encoding and compression of image, video and audio. Based on a previous successful applications (FRAZIER, 1999) together a commitment to quality results, this paper evaluates the use of the Discrete Wavelet Transform (DWT) as an compression algorithm to reduce the amount of data collected in road load signals (load history) which are used by the durability engineering teams in the automotive industry.
Technical Paper

The Impact of Globalization and New Materials on the Transition to a Fully Digital Tool and Die

2009-04-20
2009-01-0979
Until recently, tool & die making was a very traditional industry, relying on extensive know-how accumulated over decades of practice. Essentially, it remained a two stage-process: engineering/manufacture, followed by tryout/productionization. Improvements focused on engineering and production methods, but tryout remained the exclusive domain of the die maker. At last, advances in computer modeling methods and the adoption of aggressive lean management principles have brought transformational changes to the tryout phase. At the same time, new safety and weight imperatives have increased the penetration of advanced materials, whose formability characteristics are quite different from mild steels. This paper will explore how these advanced materials affect this transformation.
Technical Paper

Stretch Flanging Formability Prediction and Shape Optimization

2006-04-03
2006-01-0351
Flanging is a secondary operation in sheet metal forming processes. Traditionally, the design of flange shape and trim line is based on an engineer's experience. It takes several iterations to achieve the desired flange geometry because of potential splits. In this paper, an efficient CAE-based tool is developed to quickly predict the formability of a given flange design and enable the optimization of trim lines. A numerical algorithm is formulated in this CAE tool to convert the 3D flanging process into an equivalent in-plane deformation problem. The developed CAE tool is also integrated with the optimization software LS-OPT for trim line design.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
Technical Paper

Sound Synthesis for an Engine Air Induction System

2007-11-28
2007-01-2841
Sound Quality is one of the most important factors to achieve a successful design for Engine Air Induction Systems. Vehicle and bench testing, and simulation tools can be used in order to optimize and refine emitted noise. One difficulty on using simulation in advanced development phases is the necessity to interpret the response curves and assess if sound quality is acceptable. One recent and promising area to help simulation interpretation is the sound synthesis of the emitted noise. This paper presents a simple procedure and example with the objective of reproducing the emitted noise, which allows subjective assessments of different tuning concepts. The example, even a simple one, shows the advantage to finally hear what was simulated.
Technical Paper

Some Challenges to Crashworthiness Analysis

2006-04-03
2006-01-0669
In the past twenty years, the explicit finite element method has been successfully employed for crash simulation. At present, crashworthiness analysis is still basically a calibration based engineering practice, but not a fully predictive process. The increasing expectations and requirements on CAE are even more challenging. To develop a predictive and reliable CAE tool, it is important to investigate the root causes that affect the numerical accuracy and the availability of the analytical method. Some of the challenging issues are discussed here from both theoretical and engineering aspects, such as convergence of explicit finite element method, locking-free shell element, analysis of material rupture, and modeling of spot weld.
Technical Paper

Serpentine Accessory Belt Drive Tool: Virtual Prototyping for V-Ribbed Belt Drives

2001-04-30
2001-01-1424
Serpentine accessory belts are commonly used in industries such as automotive and general machinery. The purpose of this analytical tool is to provide design engineers the capability to model belt drive systems using ADAMS (Automated Dynamic Analysis of Mechanical Systems). The generated ADAMS models can be used to analyze several different characteristics concerning V-Ribbed belt drive systems. The general solution of the governing nonlinear equations provides the coupled longitudinal and transverse response of the translating belt drive system. Typical simulation outputs include pulley hubloads, belt impact dynamic forces, and belt slip rates at the pulleys.
Technical Paper

Robustness Design to Avoid Noise on Exterior Handle System

2020-01-13
2019-36-0137
Squeak and rattle are two undesirable occurrences during component operation and during vehicle driving condition, resulting in one of the top complains from costumers. One common grievance could happen during the user exterior handle operation and during side door closing. The exterior handle system during the operation could generate a squeak between interface parts, if materials and geometric tolerances was not been carefully designed. Also, vibration generated during door closing effort, might generate squeak between parts since the reinforcement for exterior handle touches the outer sheet metal internally. For this reason several guidelines might be included to avoid potential noise condition for this system during vehicle lifetime as correct material reduce friction between parts, taking into consideration the geometric condition between parts. Plus, coupling system on handles two pieces should also be evaluated to avoid squeak during use.
Technical Paper

Retooling Jack’s Static Strength Prediction Tool

2006-07-04
2006-01-2350
Often, ergonomists need to determine the maximum acceptable load or force for a given task. Ergonomic tools, like the NIOSH Lifting Guidelines (Waters et al, 1993) and the Liberty Mutual Tables (Snook & Ciriello, 1991)), provide such loads for selected population percentiles. In contrast, the UGS Jack Static Strength Prediction tool (JSSP), based on the University of Michigan’s 3D Static Strength Prediction Program (3DSSPP), uses force(s) as inputs and calculates the percentage of the male or female population that would be capable (%Cap) for a given task. Typically, the %Cap threshold will be a fixed number determined from corporate or government guidelines (e.g. 75% of females). Thus, in order to find the acceptable load, users of JSSP must iterate through loads until they find a %Cap that is just below their predetermined threshold.
Technical Paper

Reliability and Maintainability of Machinery and Equipment for Effective Maintenance

1993-03-01
930569
Typically, “Reliability and Maintainability (R&M)” is perceived as a tool for products alone. Putting emphasis on reliability only at the cost of maintainability is another archetype. Inclusion of both reliability and maintainability (R&M) in all the phases of the machinery and equipment (M&E) life cycle is required in order to be world competitive in manufacturing. R&M is mainly a design function and it should be a part of any design review. Inclusion of the R&M concept early in the life cycle of M&E is key to cost effective and competitive manufacturing. Neither responsive manufacturing nor preventive maintenance can raise it above the level of inherent R&M.
Technical Paper

Physical Drawbead Design and Modeling with ABAQUS/Isight

2017-03-28
2017-01-0305
This paper focus on the design approach of mapping the equivalent bead to the physical bead geometry. In principle, the physical character and geometry of equivalent bead is represented as restraining force (N/mm) and a line (bead center line). During draw development, the iterations are performed to conclude the combination of restraining force that obtains the desired strain state of a given panel. The objective of physical bead design to determine a bead geometry that has the capacity to generate the same force as specified in 2D plane strain condition. The software package ABAQUS/CAE/Isight with python script is utilized as primary tool in this study. In the approach, the bead geometry is sketched and parameterized in ABAQUS/CAE and optimized with Isight to finalize the bead geometry.
X