Refine Your Search



Search Results

Journal Article

Validation of GISSMO Model for Fracture Prediction of a Third-Generation Advanced High-Strength Steel

Advanced high-strength steels (AHSS), due to their significantly higher strength than the conventional high-strength steels, are increasingly used in the automotive industry to meet future safety and fuel economy requirements. Unlike conventional steels, the properties of AHSS can vary significantly due to the different steelmaking processes and their fracture behaviors should be characterized. In crash analysis, a fracture model is often integrated in the simulations to predict fracture during crash events. In this article, crash simulations including a fracture criterion are conducted for a third-generation AHSS, that is, 980GEN3. A generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA is employed to evaluate the fracture predictability in the crash simulations.
Technical Paper

Standardized Equation for Hydrogen Gas Densities for Fuel Consumption Applications1

We have established an equation for the density of hydrogen gas that agrees with the current standard to within 0.01 % from 220 to 400 K with pressures up to 45 MPa. The equation is a truncated virial-type equation based on pressure and temperature dependent terms. The density uncertainty for this equation is the same as the current standard and is estimated as 0.2 % (combined uncertainty with a coverage factor of 2). Comparisons are presented with experimental data and with the full 32-term equation of state.
Technical Paper

Springback Prediction Improvement Using New Simulation Technologies

Springback is a major concern in stamping of advanced high strength steels (AHSS). The existing computer simulation technology has difficulty predicting this phenomenon accurately even though it is well developed for formability simulations. Great efforts made in recent years to improve springback predictions have achieved noticeable progress in the computational capability and accuracy. In this work, springback simulation studies are conducted using FEA software LS-DYNA®. Various parametric sensitivity studies are carried out and key variables affecting the springback prediction accuracy are identified. Recently developed simulation technologies in LS-DYNA® are implemented including dynamic effect minimization, smooth tool contact and newly developed nonlinear isotropic/kinematic hardening material models. Case studies on lab-scale and full-scale industrial parts are provided and the predicted springback results are compared to the experimental data.
Technical Paper

Smoke Particle Sizes in Low-Gravity and Implications for Spacecraft Smoke Detector Design

This paper presents results from a smoke detection experiment entitled Smoke Aerosol Measurement Experiment (SAME) which was conducted in the Microgravity Science Glovebox on the International Space Station (ISS) during Expedition 15. Five different materials representative of those found in spacecraft were pyrolyzed at temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow conditions. The sample materials were Teflon®, Kapton®, cellulose, silicone rubber and dibutylphthalate. The transport time from the smoke source to the detector was simulated by holding the smoke in an aging chamber for times ranging from 10 to1800 seconds. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Technical Paper

Progress Towards Nondestructive, On-Line Measurement of Sheet Metal Formability

A completely nondestructive means of r-value measurement is being developed. Unlike the modul-r method, it requires no specimen removal and has potential for on-line measure-ment. The method employs noncontacting ultrasonic transducers which generate waves propagating at three different angles relative to the sheet rolling direction. A prototype instrument based on these principles has been jointly developed by researchers at Ford Motor Company and National Institute of Standards and Technology (NIST). At present, there are correlations between ultrasonic and mechanical measurements of r̄. The ultrasonic measurements generally agree with mechanical measurements to 0.1 or better. A method based on metallurgical theories is being developed to use ultrasonic velocity measure-ments to predict not only r̄, but individual r values. To date, all measurements have been made on static sheet. We are currently developing a device to move sheet metal at controlled velocity.
Technical Paper

Prediction of Stretch Flangeability Limits of Advanced High Strength Steels using the Hole Expansion Test

More and more advanced high strength steels (AHSS) such as dual phase steels and TRIP steels are implemented in automotive components due to their superior crash performance and vehicle weight reduction capabilities. Recent trends show increased applications of higher strength grades such as 780/800 MPa and 980/1000 MPa tensile strength for crash sensitive components to meet more stringent safety regulations in front crash, side impact and roll-over situations. Several issues related to AHSS stamping have been raised during implementation such as springback, stretch bending fracture with a small radius to thickness ratio, edge cracking, etc. It has been shown that the failure strains in the stretch bending fracture and edge cracking can be significantly lower than the predicted forming limits, and no failure criteria are currently available to predict these failures.
Journal Article

Practical Application of the Hole Expansion Test

Until now the hole expansion ratio has been generally regarded as a relative “local formability” parameter with limited application to edge-cracking analysis and prediction. In this study a constrained statistical test data analysis methodology is introduced, where the lower-bound hole expansion ratio is the basis for three practical edge-cracking failure criteria. The Maximum Edge Stretch Criterion is directly compatible with CAE simulation. The Edge Thinning Limit Criterion and the Critical Thickness Criterion are more useful in field work and post mortem laboratory failure analysis. Two case studies are described, where hole expansion test data are used to analyze edge cracking of Advanced High Strength Steel (AHSS) in real-world automotive seating applications.
Journal Article

Optimized AHSS Structures for Vehicle Side Impact

Advanced high strength steels (AHSS) have been widely accepted as a material of choice in the automotive industry to balance overall vehicle weight and stringent vehicle crash test performance targets. Combined with efficient use of geometry and load paths through shape and topology optimization, AHSS has enabled vehicle manufacturers to obtain the highest possible ratings in safety evaluations by the Insurance Institute for Highway Safety (IIHS) and the National Highway Traffic Safety Administration (NHTSA). In this study, vehicle CAE side impact models were used to evaluate three side impact crash test conditions (IIHS side impact, NHTSA LINCAP and FMVSS 214 side pole) and the IIHS roof strength test condition and to identify several key components affecting the side impact test performance. HyperStudy® optimization software and LS-DYNA® nonlinear finite element software were utilized for shape and gauge optimization.
Technical Paper

On the Formability of Automotive TRIP Steels

The issue of cost and weight reduction at optimum car crash safety is a driving force behind the growing use of advanced high strength steels, particularly in Europe and Japan. Recent developments in the availability of high strength steel (HSS) sheets in North America; in particular transformation induced plasticity (TRIP) steels, offer an attractive option to the automotive designer for weight reduction and improved safety performance. For example, the use of TRIP steels, as opposed to more conventional steel products such as high strength low alloy (HSLA), in some applications may result in up to 40% part weight reduction at similar vehicle crash performance. When the excellent formability of TRIP steel is considered at product design stage, it may also lead to reducing part count and tooling cost. In this paper the formability of TRIP steels of various gauges is assessed. Experimental forming limit curves (FLCs) are determined for T600 grade.
Technical Paper

On Formability Limitations in Stamping Involving Sheared Edge Stretching

The use of advanced high strength steels (AHSS) such as dual phase (DP), transformation induced plasticity (TRIP) and stretch flanging (SF) steels of the tensile strength of 600 MPa range are well established in automotive components production. This is due to their superior crash energy absorption ability and vehicle weight reduction potential. Recent trends show rapid growth in applications of even higher strength grades such as 800 MPa and 1000 MPa tensile strength and above. They are mostly used for fabrication of crash sensitive components to meet much higher safety requirements in side impact and roll-over accidents. One of the few concerns during the fabrication of AHSS components is the formability limit in flanging and hole expansion operations. Questions have been raised about the applicability of existing manufacturing experience with conventional high strength low alloy steels (HSLA) to new generations of AHSS.
Technical Paper

Numerical Investigation of Effects of Frame Trigger Hole Location on Crash Behavior

The front rail plays a very important role in vehicle crash. Trigger holes are commonly used to control frame crush mode due to their simple manufacturing process and flexibility for late changes in the product development phase. Therefore, a study, including CAE and testing, was conducted on a production front rail to understand the effects of trigger hole shape, size and orientation. The trigger hole location in the front rail also affects crash performance. Therefore, the effect of trigger hole location on front rail crash behavior was studied, and understanding these effects is the main objective of this study. A tapered front rail produced from 1.7 mm thick DP600 steel was used for the trigger hole location investigation. Front rails with different trigger spacing and sizes were tested using VIA sled test facility and the crash progress was simulated using a commercial code RADIOSS. The strain rate, welding and forming effects were incorporated in the front rail modeling.
Technical Paper

Metal Forming Characterization and Simulation of Advanced High Strength Steels

Advanced high strength steels (AHSS), such as dual phase (DP) and transformation induced plasticity (TRIP) steels, have been used successfully for making light weight vehicles and their usage is growing. Now, the automotive industry is expanding the use of AHSS to higher strength levels for further mass reduction. In a 2003 SAE paper, the material and formability characteristics for such steels were presented for steel grades of DP980, high yield type DP780 (780YM), low yield type DP780 (780YL), TRIP780, and TRIP590. In this study, experiments were conducted to assess the formability of these high strength steels using a T-channel, which incorporates several different forming modes in automotive stamping. The feasibility of computer simulation technology for the formability analyses of AHSS is also addressed.
Technical Paper

Materials Selection for Automotive Closure Applications with Respect to Cost and Function

In the past ten year period, due primarily to government mandates for fuel economy improvement, alternate materials have replaced steel on many closure applications at American OEMs (hoods, decklids, and liftgates). But due to recent cost reduction initiatives set by automakers and the advent of newly developed high strength steels, this trend has been challenged by lighter weight, less costly steel alternatives, with near equal or superior performance. This paper, through case studies undertaken at several North American OEM facilities, examines the cost differential, material property options, manufacturing differences, and performance characteristics between the application of aluminum and steel for common hood, lift gate, and deck lid assemblies for both current and future production parts.
Technical Paper

Material Property and Formability Characterization of Various Types of High Strength Dual Phase Steel

As a result of the increasing usage of high strength steels in automotive body structures, a number of formability issues, particularly bend and edge stretch failures, have come to the forefront of attention of both automotive OEMs and steel makers. This investigation reviews these stamping problems and attempts to identify how certain material properties and microstructural features relate to forming behavior. Various types of dual phase steels were evaluated in terms of tensile, bending, hole expansion, limiting dome height, and impact properties. In addition, the key microstructural differences of each grade were characterized. In order to understand the material behavior under practical conditions, stamping trials were conducted using actual part shapes. It was concluded that material properties can be optimized to maximize local formability in stamping applications. The results also emphasize that the dual phase classification can encompass a broad range of property variations.
Technical Paper

Material Applications in ULSAB-AVC (Advanced Vehicle Concepts)

Advanced high strength steels were a key enabling factor in achieving the remarkable results of the ULSAB-AVC (Advanced Vehicle Concepts) Program. The complete body structure consists of high strength steels with over 80% being advanced high strength steel grades. Vehicle weight reduction, reduced costs and improved safety performance are the main driving forces behind material selection for automotive applications. High strength steels (HSS) have demonstrated their ability to meet these demands and consequently have been the fastest growing light-weighting material in vehicle structures for the past decade. The evolution in steel technology in recent years has produced new grades of highly formable, advanced high strength steel (AHSS) grades that will continue to meet these automotive demands into the next decade.
Technical Paper

Mass Efficient Cross-Sections Using Dual Phase Steels For Axial and Bending Crushes

Because of their excellent crash energy absorption capacity, dual phase (DP) steels are gradually replacing conventional High Strength Low Alloy (HSLA) steels for critical crash components in order to meet the more stringent vehicle crash safety regulations. To achieve optimal axial and bending crush performance using DP steels for crash components designed for crash energy absorption and/or intrusion resistance applications, the cross sections need to be optimized. Correlated crush simulation models were employed for the cross-section study. The models were developed using non-linear finite element code LS-DYNA and correlated to dynamic and quasi-static axial and bending crush tests on hexagonal and octagonal cross-sections made of DP590 steel. Several design concepts were proposed, the axial and bending crush performance in DP780 and DP980 were compared, and the potential mass savings were discussed.
Technical Paper

Influence of AHSS Part Geometric Features on Crash Behavior

Advanced High Strength Steels (AHSS) are replacing conventional high strength low-alloyed steels (HSLA) in crash sensitive body in white (BIW) applications. Along with innovative product design, they offer superior crash energy management and vehicle weight reduction potential. However, Controlling springback and dimensional accuracy is one of the major concerns in manufacturing AHSS parts. One of the most effective springback control techniques is to design a part with added geometric features such as side stiffening beads, state beads, top hat beads, and embossments, etc. at the product design stage. On the other hand, product design communities tend to believe that the above listed features may result in premature crash initiation in the part. This paper uses an innovative and experimentally verified finite element method (FEM) for crash sensitive component design and optimization.
Technical Paper

Hydroforming Simulation for High Strength Steel Tubes

Tubular hydroforming is being used extensively for manufacturing various automotive structural parts due to its weight reduction and cost saving potentials. The use of a thin wall advanced high strength steel (AHSS) tube offers great potential to further expand hydroforming applications to upper body components. In this study, numerical and experimental investigations are conducted on a free expansion hydroforming case using various AHSS thin wall tubes. The results are also compared with tubes made from conventional steels and different tubing processes. The appropriate use of the forming limit in hydroforming is also discussed. In numerical study, a new simulation method is developed and validated to handle tube material properties input. Good correlations to the experimental data have been obtained. The new method only requires the flat sheet stress–strain curves as the basic material property. Tube and weld properties are modeled as a pre-strained tubular blank.
Technical Paper

Hydroforming Performance of Laser Welded and Electric Resistance Welded High Strength Steel Tubes

The tubular hydroforming process has been used to reduce the weight of body-in-white (BIW) components by consolidating parts and eliminating weld flanges. Electric resistance welding (ERW) is the primary joining method for hydroformed tubes made of mild steels and some conventional high strength steels. Due to recently introduced Advanced High Strength Steels (AHSS), such as dual phase and TRIP steels, laser welded (LW) tubes have also been considered for hydroforming applications, particularly for thin-wall, large-diameter tubes. In this study, LW and ERW tubes are evaluated in a free-expansion hydroforming process using various strength steels including AHSS. The LW tubes made from both DP590 and TRIP590 steels were successfully hydroformed to a 64% expansion ratio(the maximum for the die cavity), an improved performance over the ERW TRIP590 tubes. The ERW tubes made from C-Mn440 and lower strength grades were also free-expansion hydroformed successfully to the maximum die cavity.