Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Wall Heat Flux on Impinging Diesel Spray Flame: Effect of Hole Size and Rail Pressure at Similar Injection Rate Condition

2020-11-30
2020-32-2313
The fuel economy of recent small size DI diesel engines has become more and more efficient. However, heat loss is still one of the major factors contributing to a substantial amount of energy loss in engines. In order to a full understanding of the heat loss mechanism from combustion gas to cylinder wall, the effect of hole size and rail pressure at similar injection rate condition on transient heat flux to the wall were investigated. Using a constant volume vessel with a fixed impingement wall, the study measured the surface heat flux of the wall at the locations of spray flame impingement using three thin-film thermocouple heat-flux sensors. The results showed that the transferred heat was similar under similar injection rate profiles. However, in case of flame luminosity, temperature distribution, characteristic of local heat flux and soot distribution was also similar except the smaller nozzle hole size with higher injection pressure.
Technical Paper

Spray, Mixture and Combustion Characteristics of Small Injection Amount Fuel Spray Injected by Hole Nozzle for Diesel Engine

2016-11-08
2016-32-0064
The injection amount per stage in a multiple injection strategy is smaller than a conventional single-stage injection. In this paper, the effect of the injection amount (0.27mg, 0.89mg, 2.97mg) under 100MPa injection pressure and the effect of injection pressure (100MPa, 150MPa, 170MPa) under different injection amounts (0.27mg, 2.97mg) on the spray and mixture formation characteristics were studied by analyzing the vapor/liquid phase concentration distributions obtained under various conditions via using the tracer LAS technique. The spray was injected into a high-pressure and high-temperature constant volume vessel by using a single-hole nozzle with a diameter 0.133mm. The higher the injection pressure with a smaller injection amount is, the shorter the spray tip penetration and leaner air-fuel mixture occur. The combustion processes had been examined by a high-speed video camera with the two-color pyrometry method.
Technical Paper

Fuel Spray Combustion of Waste Cooking Oil and Palm Oil Biodiesel: Direct Photography and Detailed Chemical Kinetics

2013-10-14
2013-01-2554
This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle.
Technical Paper

Experimental Study on Diesel Spray Combustion and Wall Heat Transfer with Multiple Fuel Injection Strategies - Results of Rapid Compression and Expansion Machine Experiment

2023-10-24
2023-01-1843
The rapid compression expansion machine (RCEM) was used to investigate the temporal variations of the spray flame and wall heat flux in the diesel engine combustion process by using 120 MPa and 180 MPa common rail pressure. A stepped cavity was applied to investigate spray and flame behavior under the pilot, pre and main multiple injection strategy. Wall heat flux sensors were installed in the piston cavity and the cylinder side. The injector has 3 holes with the neighboring angle in the left direction and another 3 holes in the right direction to simulate the spray interaction in the 10-hole injector combustion system in the actual diesel engine. The spray and flame behavior were taken by a high-speed video camera with direct photograph. A two-color analysis was applied to investigate gas temperature and KL factor distribution. The effect of locations and common rail pressure on heat transfer was investigated.
Journal Article

Effect of Ethanol Ratio on Ignition and Combustion of Ethanol-Gasoline Blend Spray in DISI Engine-Like Condition

2015-04-14
2015-01-0774
To reduce carbon dioxide emission and to relieve the demand of fossil fuels, ethanol is regarded as one of the most promising alternative fuels for gasoline. Recently, using ethanol in the state-of-the-art gasoline engine, direct-injection spark-ignition (DISI) engine, has become more attention by researchers due to less knowledge of the ignition and combustion processes in that engine. In this study, different ethanol-gasoline blended fuels, E0 (100% gasoline), E85 (85% ethanol and 15% gasoline mixed in volume basis) and E100 (100% ethanol) were injected by a valve-covered-orifice (VCO) hole-type nozzle. The experimental environment was set to the condition similar with the near top dead center (TDC) in DISI engine. The high-speed imaging of shadowgraph, OH* chemiluminescence and flame natural luminosity were used to clarify the characteristics of the ignition process, flame development and propagation.
Technical Paper

Behaviors of Spray Droplets with and without Flat Wall Impingement

2021-09-05
2021-24-0058
Fuel spray impingement on the combustion chamber wall cannot be avoid in direct injection gasoline engines, resulting in insufficient combustion and unburned hydrocarbon/soot emissions from the engines. And the microscopic characteristics of the impinging spray have a close relation with the fuel film formation, which has a direct effect on the engine performance and emissions. Therefore, figuring out the droplet behaviors of the impinging spray is significantly important for improving the engine performance and reducing emissions. However, the microscopic characteristics of the impinging spray have not been deeply understood and the differences between the impinging and free spray are seldom mentioned in previous study. Therefore, particle image analysis (PIA) technique was applied to detect the microscopic characteristics at the capture location in order to track the droplet behaviors of the spray tip during the propagation process.
X