Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

The Influence of Injection Strategy and Glow Plug Temperature on Cycle by Cycle Stability Under Cold Idling Conditions for a Low Compression Ratio, HPCR Diesel Engine

2012-04-16
2012-01-1071
Experimental studies have been undertaken on a single-cylinder HPCR diesel engine with a compression ratio of 15.5:1 to explore the effect of fuel injection strategy on cycle by cycle stability. The influence of the number, separation and quantity of pilot injections on the coefficient of variation of IMEP has been investigated at -20°C, 1000 rev/min, post-start idling conditions. Injection strategy and glow plug temperature trade-off has also been investigated at a range of soak temperatures. Up to four pilot injections have been used. For timing of the main injection near to the optimum, CoVIMEP values of 10% or better can be achieved. Closer spacing of injections improved stability and extended the range of timings to meet target stability. The best combinations of pilot number and pilot quantity varied with total fuel delivered.
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

2012-04-16
2012-01-0697
The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

2012-04-16
2012-01-1212
A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Technical Paper

Stoichiometric Air-Fuel Ratio Control Analysis

1981-02-01
810274
A great deal of current automotive engineering effort involves the development of three-way catalyst-based emission control systems that seek to minimize fuel consumption while simultaneously meeting stringent exhaust emission standards. Mitigation of emissions is enhanced in a three-way catalyst system when the system air-fuel ratio (A/F) is in proximity to ideal burning or stoichiometry. This paper is concerned with extending methods used for determining engine calibrations to closed-loop systems with three-way catalysts. The paper presents a simulation model that employs experimentally obtained data to characterize the A/F control loop.
Technical Paper

Renewable Ethanol Use for Enabling High Load Clean Combustion in a Diesel Engine

2013-04-08
2013-01-0904
As a renewable energy source, the ethanol fuel was employed with a diesel fuel in this study to improve the cylinder charge homogeneity for high load operations, targeting on ultra-low nitrogen oxides (NOx) and smoke emissions. A light-duty diesel engine is configured to adapt intake port fuelling of the ethanol fuel while keeping all other original engine components intact. High load experiments are performed to investigate the combustion control and low emission enabling without sacrificing the high compression ratio (18.2:1). The intake boost, exhaust gas recirculation (EGR) and injection pressure are independently controlled, and thus their effects on combustion and emission characteristics of the high load operation are investigated individually. The low temperature combustion is accomplished at high engine load (16~17 bar IMEP) with regulation compatible NOx and soot emissions.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

Investigation of Nozzle Clearance Effects on a Radial Turbine: Aerodynamic Performance and Forced Response

2013-04-08
2013-01-0918
Variable nozzle turbine (VNT) technology has become a popular technology for diesel engine application. To pivot the nozzle vane and adjust the turbine operating condition, nozzle clearances are inevitable on both the hub and shroud side of turbine housing. Leakage flow formed inside the nozzle clearance leads to extra flow loss and makes the nozzle exit flow less uniform, thus further affects downstream aerodynamic performance of the rotor. As the leakage mixing with nozzle wake flow, the process is highly unsteady, which increases the fluctuation amplitude of transient load on the rotating turbine wheels. In present paper, firstly steady CFD analysis of a turbocharger turbine was performed at different nozzle openings. Then unsteady simulation of the turbine was carried out to investigate the interaction between the leakage flow through nozzle clearance and the main flow. Nozzle clearance's effect on turbine performance was investigated.
Journal Article

Investigating the Potential to Reduce Crankshaft Main Bearing Friction During Engine Warm-up by Raising Oil Feed Temperature

2012-04-16
2012-01-1216
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
Technical Paper

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

2013-04-08
2013-01-0513
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. Using an accelerated aging procedure, a set of production exhaust systems from a 2011 Ford F250 equipped with a 6.7L diesel engine have been aged to an equivalent of 150,000 miles of thermal aging and metal exposure. These exhaust systems included a diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ULSD containing no measureable metals, B20 containing sodium, B20 containing potassium and B20 containing calcium. Metals levels were selected to simulate the maximum allowable levels in B100 according to the ASTM D6751 standard. Analysis of the aged catalysts included Federal Test Procedure emissions testing with the systems installed on a Ford F250 pickup, bench flow reactor testing of catalyst cores, and electron probe microanalysis (EPMA).
Technical Paper

Effects of Turbulence on Mixture Stratification in a Small-Bore Utility Engine

2012-10-23
2012-32-0005
The current work investigates the in-cylinder mixing of a fluorescent tracer species inducted into the engine through a small-diameter tube mounted along the inner port wall and the remaining inlet stream in a small-bore utility engine. Planar laser-induced fluorescence (PLIF) measurements were acquired on a single plane, parallel to and approximately 4 mm below the cylinder head deck, throughout the intake and compression strokes. The data were analyzed to qualitatively and quantitatively describe the evolution of the mixture stratification. The highest degree of stratification in the mean field was observed at a timing of 90 crank angle (CA) degrees after top dead center (aTDC) of the intake stroke, which corresponds closely to the point of maximum intake valve lift (105 CA degrees aTDC).
Journal Article

Effects of 7, 9, and 10 psi Vapor Pressure Fuels on Multi-Day Diurnal Evaporative Emissions of Tier 2 and LEV II Vehicles

2013-04-08
2013-01-1057
In order to meet more stringent evaporative emissions requirements, multiple advancements in vehicle fuel system and carbon canister technologies have been made. Regardless of technological advancements, the vapor pressure of the fuel remains a vital property in controlling evaporative emissions. A series of tests were performed to explore the effects of vapor pressure on multiday diurnal evaporative emissions for 9 and 10 psi Reid Vapor Pressure (RVP) 10% ethanol (E10) gasoline-blend fuels, followed by tests with 7 psi RVP E10 gasoline on a subset of the same vehicles. A test procedure was developed to monitor evaporative emissions, canister loading profiles and breakthrough emissions for each of the fuels. A total of five vehicles were tested on all 3 fuels, blended to represent 7, 9, and 10 psi at sea level. Tests were run over 14 days using the United States (U.S.)
Technical Paper

EGR and Swirl Distribution Analysis Using Coupled 1D-3D CFD Simulation for a Turbocharged Heavy Duty Diesel Engine

2011-09-13
2011-01-2222
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbo Diesel and code named "Scorpion" was designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. A high pressure Exhaust Gas Recirculation (EGR) layout in combination with a Variable Geometry Turbine (VGT) is used to deliver cooled EGR for in-cylinder NOx reduction. The cylinder-to-cylinder variation of EGR and swirl ratio is tightly controlled by the careful design of the EGR mixer and intake system flow path to reduce variability of cylinder-out PM and NOx emissions. 3D-CFD studies were used to quickly screen several EGR mixer designs based on mixing efficiency and pressure drop considerations. To optimize the intake system, 1D-3D co-simulation methodology with AVL-FIRE and AVL-BOOST has been used to assess the cylinder-to-cylinder EGR distribution and dynamic swirl.
Technical Paper

Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation, Part 2

1996-08-01
961712
A fuel cell (FC) powerplant is an electrochemical engine that converts fuel and an oxidant electrochemically into electric energy, water and other chemical byproducts. When hydrogen is used as the fuel, the only products of the electrochemical reactions are water and electric power. Other conventional and advanced powerplants for transportation, such as the internal combustion (IC) engine, the Diesel engine and others, are thermal combustion engines. The theoretical or thermodynamic efficiency of a fuel cell or electrochemical engine is much higher than the thermodynamic efficiency of a heat engine. The practical efficiency of a fuel cell is highest at partial load, whereas the practical efficiency of a heat engine is highest at maximum power. A survey is presented of the different fuel cell types and their characteristics. The proton-exchange-membrane (PEM) fuel cell is shown to be the best available fuel cell for transportation applications.
Journal Article

Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes

2013-04-08
2013-01-1659
Many combustion researchers use peak pressure rise rate or ringing intensity to indicate combustion noise in lieu of microphone data or using a combustion noise meter that simulates the attenuation characteristics of the engine structure. In this paper, peak pressure rise rate and ringing intensity are compared to combustion noise using a fully documented algorithm similar to the ones used by combustion noise meters. Data from multiple engines operating under several low-temperature combustion strategies were analyzed. The results suggest that neither peak pressure rise rate nor ringing intensity provides a direct correlation to engine noise over a wide range of operating conditions. Moreover, the estimation of both metrics is often accompanied by the filtering of the pressure data, which changes the absolute value of the results.
Technical Paper

Advanced Urea SCR System Study with a Light Duty Diesel Vehicle

2012-04-16
2012-01-0371
U.S. federal vehicle emission standards effective in 2007 require tight control of NOx and hydrocarbon emissions. For light-duty vehicles, the current standard of Tier 2 Bin 5 is about 0.07 g/mi NOx and 0.09 g/mi NMOG (non-methane organic gases) at 120,000 mi. However, the proposed future standard is 0.03 g/mi for NMOG + NOx (~SULEV30) at 150,000 mi. There is a significant improvement needed in catalyst system efficiencies for diesel vehicles to achieve the future standard, mainly during cold start. In this study, a less than 6000 lbs diesel truck equipped with an advanced urea Selective Catalytic Reduction (SCR) system was used to pursue lower tailpipe emissions with an emphasis on vehicle calibration and catalyst package. The calibration was tuned by optimizing exhaust gas recirculation (EGR) fuel injection and cold start strategy to generate desirable engine-out emissions balanced with reasonable temperatures.
Technical Paper

A Visualization Test Setup for Investigation of Water-Deposit Interaction in a Surrogate Rectangular Cooler Exposed to Diesel Exhaust Flow

2012-04-16
2012-01-0364
Exhaust gas recirculation (EGR) coolers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases in order to reduce NOx emissions. The presence of a cool surface in the hot exhaust causes particulate soot deposition as well as hydrocarbon and water condensation. Fouling experienced through deposition of particulate matter and hydrocarbons results in degraded cooler effectiveness and increased pressure drop. In this study, a visualization test setup is designed and constructed so that the effect of water condensation on the deposit formation and growth at various coolant temperatures can be studied. A water-cooled surrogate rectangular channel is employed to represent the EGR cooler. One side of the channel is made of glass for visualization purposes. A medium duty diesel engine is used to generate the exhaust stream.
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

2012-04-16
2012-01-1328
The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
X