Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Car Sound Synthesis Technique for Brand Sound Design of Hybrid and Electric Vehicles

2012-11-25
2012-36-0614
One of the practical consequences of the development of low CO₂ emission cars is that many of the traditional NVH sound engineering processes no longer apply and must be revisited. Different and new sound sources, new constraints on vehicle body design (e.g., due to weight) and new sound perception characteristics make that the NVH knowledge built on generations of internal combustion-powered vehicles cannot be simply transferred to Hybrid and Electric Vehicles (HEV). Hence, the applicability of tools must be reviewed and extensions need to be developed where necessary. This paper focuses on sound synthesis tools as developed for ICE-powered vehicles. Because of the missing masking effect and the missing intake and exhaust noise of the Internal Combustion Engine (ICE) in electric vehicles, on one hand electric vehicles are quieter than traditional vehicles.
Technical Paper

Vibration Testing and Modal Analysis of Airplanes – Recent Advances

2004-11-02
2004-01-3140
The paper will introduce some recent advances in vibration testing and modal analysis of airplanes. Recently, a very promising parameter estimation method became available, that has the potential to become the new standard. The main advantage of this so-called PolyMAX method is that it yields extremely clear stabilization diagrams even for broadband and high-order analyses. The method will be applied to two aircraft cases: a Ground Vibration Test using broadband shaker excitation on a small composite aircraft and in-flight data using natural turbulences as excitation. These two data sets allow illustrating both the classical Frequency Response Function based as well as the operational output-only modal analysis process.
Technical Paper

Vibration Qualification Test of an Aircraft Piccolo Tube Using Multiple-Input-Multiple-Output Control Technology

2013-09-17
2013-01-2315
Wing Anti-Icing Systems (WAIS) are integral part of a wing design. Their presence ensures safety in all-weather conditions. In standard designs, the WAIS are fitted in the slat internal structure and runs throughout its span in between the ribs. Given its critical function, such a system has to pass qualification test. The test specification is dictated by international standards. In the case discussed in this article, the standard adopted is the RTCA DO-160G “Environmental Conditions and Test Procedures for Airborne Equipment”. In particular, the work presented here concerns with the Vibration environmental test. The standard prescribes a number of dynamic tests to be carried out on the AIS: random, shock and sine excitation tests have to be performed in order to study their effect on the parts composing the Anti-Icing System. The standard prescribes vibration levels at the attachment locations of the AIS to the wings' ribs.
Technical Paper

Using Mechanical-Acoustic Reciprocity for Diagnosis of Structure Borne Sound in Vehicles

1993-05-01
931340
The low frequency interior noise in cars is for a large part the result of structure borne excitation. The transfer of the structure borne sound involves a large number of components of the engine suspension, wheel suspension and chassis which are all potentially contributing to the overall noise level. This process can be analyzed through a combination of transfer function measurements with operational measurements under normal conditions. This technique, called transfer path analysis, requires large numbers of transfer function measurements with excitation of the body or cabin at the rubber mountings. Unfortunately, bad access to these crucial measurement locations causes either high instrumentation and measurement effort or less accurate measurement data. The practicality and quality of the measurements can be improved by using reciprocal measurements for the mechano-acoustic transfer of the body or cabin structure; a loudspeaker in the cavity is used for the reciprocal excitation.
Technical Paper

Updating of Dynamic Finite Element Models Based on Experimental Receptances and the Reduced Analytical Dynamic Stiffness Matrix

1995-05-01
951247
This paper presents a model updating method based on experimental receptances. The presented method minimises the so called ‘indirect receptance difference’. First, the reduced analytical dynamic stiffness matrix is expressed as an approximate, linearised function of the updating parameters. In a numerically stable, iterative procedure, this reduced analytical dynamic stiffness matrix is changed in such a way that the analytical receptances match the experimental receptances at the updating frequencies. The updating frequencies are a set of selected frequency points in the frequency range of interest. Some considerations about an optimal selection of the updating frequencies are given. Finally, a mixed static-dynamic reduction scheme is discussed. Dynamic reduction of the analytical dynamic stiffness matrix at each updating frequency is physically exact, but it involves a great computational effort.
Technical Paper

Time-domain Transfer Path Analysis for Transient Phenomena Applied to Tip-in/Tip-out (Shock & Jerk)

2012-06-13
2012-01-1545
Tip-in/Tip-out of the accelerator pedal generates transient torque oscillations in the driveline. These oscillations may be amplified by P/T, suspension and body modes and will eventually be sensible at the receiver side in the vehicle, for example at the seat or at the steering-wheel. The forces that are active during this transient excitation are influenced by non-linear effects in both the suspension and the power train mounts. In order to understand the contribution of each of these forces to the total interior target response (e.g. seat rail vibration) a detailed investigation is performed. Traditional force identification methods are not suitable for low-frequent, transient phenomena like tip-in/tip-out. Mount stiffness method can not be used because of non-linear effects in the P/T and suspension mounts. Application of matrix inversion method based on trimmed body vibration transfer functions is not possible due to numerical condition problems.
Technical Paper

Time-Domain Source Contribution Analysis Method for In-Room Pass-By Noise

2011-05-17
2011-01-1609
This paper presents a new time-domain source contribution analysis method for in-room pass-by noise. The core of the method is a frequency-domain ASQ model (Airborne Source Quantification) representing each noise generating component (engine, exhaust, left and right tyres, etc.) by a number of acoustic sources. The ASQ model requires the measurement of local FRF's and acoustic noise transfer functions to identify the operational loads from nearby pressure indicator responses and propagate the loads to the various target microphones on the sides of the vehicle. Once a good ASQ model is obtained, FIR filters are constructed, allowing a time-domain synthesis of the various source contributions to each target microphone. The synthesized target response signals are finally recombined into a pass-by sound by taking into account the speed profile of the vehicle.
Technical Paper

Synthesis of Drive-by Noise Based on Numerically Evaluated Source-Receiver Transfer Functions Employing the FMBEM

2011-05-17
2011-01-1610
Prediction of the drive-by noise level in the early design stage of an automotive vehicle is feasible if the source signatures and source-receiver transfer functions may be determined from simulations based on the available CAD/CAE models. This paper reports on the performance of a drive-by noise synthesis procedure in which the transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM). The proposed synthesis procedure first computes the steady-state receiver contributions of the sources as appearing from a number of vehicle positions along the drive path. In a second step, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction.
Technical Paper

Suspension Analysis in View of Road Noise Optimization

1993-05-01
931343
As powertrain noise is better and better controlled, road inputs become more important. The trend to mount 6 cylinder engines in smaller cars also emphasizes the importance of road induced noise. A method to qualify and quantify the different contributions is presented and illustrated. This methodology is based on a novel combination of existing technology: transferpath analysis, traditionally used for ranking of powertrain inputs on one hand and principal component analysis, traditionally used for visualisation of operating shapes in a multiple uncorrelated input environment. As suspension inputs represent multiple incoherent sources, the classical vector summation used in noise path analysis is not applicable. On the other hand, root mean square summation of all contributions does not keep track of phase relations between suspension-body connections which are important in the understanding of the global picture.
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

1999-05-17
1999-01-1849
In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
Technical Paper

Sound Quality Equivalent Modeling for Virtual Car Sound Synthesis

2001-04-30
2001-01-1540
The pressure on development cycles in the automotive industry forces the acoustical engineers to create awareness of sound quality in the early stages of development, perhaps even before a physical prototype is available. Currently, designers have few tools to help them listen to their “virtual” models. For the design of a synthesis platform of in-vehicle binaural sound, the sound should be modeled with almost identical sound quality perception. A concept is presented where the total sound of a vehicle is split in a number of components, each with its own sound characteristics. These characteristics are described in a signal model that allows the analysis of an existing sound into a limited number of signal components: orders-frequency spectra, time envelopes and time recordings.
Technical Paper

Simulating Acoustic Engine Performance Over a Broad Frequency Range

2011-01-19
2011-26-0019
Acoustic performance of vehicle engines is a real challenge for powertrain design engineers. Quiet engines are required to reduce noise pollution and satisfy pass-by noise regulations, but also to improve the driving comfort. Simulation techniques such as the Boundary Element Method (BEM) have already been available for some time and allow predicting the vibro-acoustic response of engines. Although the accuracy of these simulation techniques has been proven, a challenge still remains in the required computation time. Given the large amount of speeds for a full engine run-up and the need to cover a large frequency range, computation times are significant, which limits the possibility to perform many design iterations to optimize the system. In 2001, Acoustic Transfer Vectors (ATV) [1] have been presented to adequately deal with multiple rpm. The ATV provide the acoustic response for unit surface velocities and are therefore independent from the engine's actual surface vibrations.
Technical Paper

Reducing Body Development Time by Integrating NVH and Durability Analysis from the Start

2006-04-03
2006-01-1228
Due to the trend to build more vehicle models on a common platform, body development is very often on the critical path in the automotive development process. While the virtual assessment of attributes like crash, structural rigidity or production feasibility is common practice today, it is done less systematically for NVH and durability. They are traditionally only considered close to the availability of prototypes. Performance issues discovered at this stage will lead to additional design cycles which conflicts with the need to further shorten the total development time. The process proposed in this paper results in a better initial design by doing more NVH analysis in the pre-CAD phase and a reduced number of iteration cycles required for NVH and durability engineering by iterating much faster to the final design. Mesh morphing and beam concept analysis make it possible to evaluate and optimize functional performance characteristics based upon predecessor FE models.
Technical Paper

Radiated Fuel Tank Slosh Noise Simulation

2011-04-12
2011-01-0495
With the introduction of hybrid vehicles and the associated elimination of engine and exhaust masking noises, sounds from other sources is becoming more noticeable. Fuel tank sloshing is one of these sources. Fuel sloshing occurs when a vehicle is accelerated in any direction and can create noise that may be perceived as a quality issue by the customer. To reduce slosh noise, a fuel tank has to be carefully designed. Reduction in slosh noise using test- based methods can be very costly and timely. This paper shows how, using the combination of CFD (Computational Fluid Dynamic), FE (Finite Element) and Acoustic simulation methods, the radiated fuel tank slosh noise performance can be evaluated using CAE methods. Although the de-coupled fluid /structure interaction (FSI) method was used for the examples in this paper, the acoustic simulation method is not limited to the decoupled FSI method.
Technical Paper

Quantification of Intake System Noise Using an Experimental Source-Transfer-Receiver Model

1999-05-17
1999-01-1659
Design optimisation with respect to interior noise is currently a topic of great concern for the automotive industry. An essential element in this process is to obtain a correct understanding of the various noise sources which are present, and the ways in which these sources propagate to the critical receiver. An experimental source-transfer-receiver methodology is presented, that allows quantifying the structure borne and airborne source strength of the intake system components and its contribution to the interior noise. The method allows interior noise optimisation after identification of the dominant contributors. The methodology is applied to identify the noise contribution of the air intake system to the interior noise of an 8-cylinder upper class vehicle. Correlation of the Structure Borne Transfer Path Analysis and Airborne Source Quantification models with physical decoupling experiments demonstrates a high correspondence.
Technical Paper

Predictive Analysis for Engine/Driveline Torsional Vibration in Vehicle Conditions using Large Scale Multi Body Model

2003-05-05
2003-01-1726
Driveline torsional vibration in vehicles equipped with an automatic gearbox can lead to increased fuel consumption. At low rpm the torque converter of the automatic gearbox is active. The earlier the torque converter can be disengaged and bypassed by a lock-up clutch, the better the efficiency of the engine. Torsional vibrations in the drivetrain could prevent this early locking of the torque convertor and thus lead to a higher fuel consumption. Furthermore, these torsional vibrations can also lead to lower driver comfort. In order to improve the efficiency and the passenger comfort, a hybrid approach has been developed to predict the torsional vibrations of a full vehicle during a run-up manoeuvre on a chassis dyno, including transient effects. The hybrid approach is based on multi body modeling of the full car in LMS DADS, taking into account the flexibility of all major components of the powertrain.
Technical Paper

Prediction of System-Level Gear Rattle Using Multibody and Vibro-Acoustic Techniques

2004-09-27
2004-32-0063
The objective of this paper is to present the development and the use of a numerical model to predict noise radiated from manual gearboxes due to gear rattle using Computer-Aided Engineering (CAE) technologies. This CAE process, as outlined in this paper, includes measured data, computational flexible multibody dynamics, and vibro-acoustic analysis. The measured data is used to identify and reproduce the input excitation which is primarily generated from engine combustion forces. The dynamic interaction of the gearbox components, including flywheel, input/output shafts, contacting gear-pairs, bearings, and flexible housing is modeled using flexible multibody techniques. The acoustic response to the vibration of the gearbox housing is then predicted using vibro-acoustic techniques. These different technologies are augmented together to produce a virtual gearbox that can be used in noise, vibration, and harshness (NVH) performance evaluations.
Technical Paper

Passenger Vehicle Pass-By Noise Test Using Generalized Inverse Beamforming

2011-10-04
2011-36-0408
The investigation of critical noise sources on pass-by noise tests is demanding development of the current techniques in order to locate and quantify these sources. One recent approach is to use beamforming techniques to this purpose. The phased array information can be processed using several methods, for example, conventional delay-and-sum algorithms, deconvolution based algorithms, such as DAMAS, and more recently, the generalized inverse beamforming. This later method, presents the advantage of separating coherent sources with better dynamic range than conventional beamforming. Also, recent developments, such as Iteratively Re-Weigthing Least Squares, increases the localization accuracy allowing it to be used in a challenging problem as a fast moving source detection, a non-stationary condition. The work will raise the main advantages and disadvantages on this method using a practical case, a passenger vehicle pass-by test.
Technical Paper

On-Line Sound Brush Measurement Technique for 3D Noise Emission Studies

2013-05-13
2013-01-1973
A key issue in noise emission studies of noise producing machinery concerns the identification and analysis of the noise sources and their interaction and radiation into the far field. This paper presents a new acoustic measurement technique for noise source identification in stationary applications. The core of the technology is a handheld measurement instrument combining a position and orientation tracking device with a 3D sound intensity probe. The technique allows an on-line 3D visualization of the sound field while moving the probe freely around the test object. By focusing on the areas of interest, troublesome areas can be identified that require further in-depth analysis. The measurement technique is flexible, interactive and widely applicable in industrial applications. This paper explains the working principle and characteristics of this new technology and positions it to existing methods like traditional sound intensity testing and array techniques.
Technical Paper

Numerical Modeling of Engine Noise Radiation through the use of Acoustic Transfer Vectors - A Case Study

2001-04-30
2001-01-1514
This paper presents the numerical modeling of noise radiated by an engine, using the so-called Acoustic Transfer Vectors and Modal Acoustic Transfer Vectors concept. Acoustic Transfer Vectors are input-output relations between the normal structural velocity of the radiating surface and the sound pressure level at a specific field point and can thus be interpreted as an ensemble of Acoustic Transfer Functions from the surface nodes to a single field point or microphone position. The modal counter part establishes the same acoustic transfer expressed in modal coordinates of the radiating structure. The method is used to evaluate the noise radiated during an engine run-up in the frequency domain. The dynamics of the engine is described using a finite element model loaded with a rpm-dependent excitation. The effectiveness of the method in terms of calculation speed, compared with classical boundary element methods, is illustrated.
X