Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Engine Development Using Multi-dimensional CFD and Computer Optimization

2010-04-12
2010-01-0360
The present work proposes a methodology for diesel engine development using multi-dimensional CFD and computer optimization. A multi-objective genetic algorithm coupled with the KIVA3V Release 2 code was used to optimize a high speed direct injection (HSDI) diesel engine for passenger car applications. The simulations were conducted using high-throughput computing with the CONDOR system. An automated grid generator was used for efficient mesh generation with 11 variable piston bowl geometry parameters. The first step in the procedure was to search for an optimal nozzle and piston bowl design. In this case, spray targeting, swirl ratio, and piston bowl shape were optimized separately for two full-load cases using simpler efficient combustion models (the characteristic time scale model and the shell ignition model). The optimal designs from the two optimizations were then validated using a combustion model with detailed chemistry (KIVA-CHEMKIN model and ERC n-heptane mechanism).
Technical Paper

Coupling of Scaling Laws and Computational Optimization to Develop Guidelines for Diesel Engine Down-sizing

2011-04-12
2011-01-0836
The present work proposes a methodology for diesel engine development using scaling laws and computational optimization with multi-dimensional CFD tools. A previously optimized 450cc HSDI diesel engine was down-scaled to 400cc size using recently developed scaling laws. The scaling laws were validated by comparing the performance of these two engines, including pressure, HRR, peak and averaged temperature, and pollutant emissions. A novel optimization methodology, which is able to simultaneously optimize multiple operating conditions, was proposed. The method is based on multi-objective genetic algorithms, and was coupled with the KIVA3V Release 2 code to further optimize the down-scaled diesel engine. An adaptive multi-grid chemistry model was used in the KIVA3V code to reduce the computational cost of the optimization. The computations were conducted using high-throughput computing with the CONDOR system.
X