Refine Your Search

Topic

Author

Search Results

Technical Paper

Variation of Both Symmetric and Asymmetric Valve Events on a 4-Valve SI Engine and the Effects on Emissions and Fuel Economy

2000-03-06
2000-01-1222
Mechanisms exist to vary valve lift, duration and phasing either simultaneously or individually but it remains a challenge to find the optimum settings. An experimental investigation involving a statistical approach has been applied to a 4-litre, 90° vee-8, 4-valve engine in which intake valve lift, duration and phasing were chosen as variables along with exhaust valve phasing. The intake valves were operated symmetrically for the first phase of testing, but subsequently asymmetric operation was also investigated. The results indicated possible strategies that could be applied to reduce emissions.
Technical Paper

Using Pneumatic Hybrid Technology to Reduce Fuel Consumption and Eliminate Turbo-Lag

2013-04-08
2013-01-1452
For the vehicles with frequent stop-start operations, fuel consumption can be reduced significantly by implementing stop-start operation. As one way to realize this goal, the pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into air tanks installed on the vehicle. The compressed air can then be reused to drive an air starter to realize a regenerative stop-start function. Furthermore, the pneumatic hybrid can eliminate turbo-lag by injecting compressed air into manifold and a correspondingly larger amount of fuel into the cylinder to build-up full-load torque almost immediately. This paper takes the pneumatic hybrid engine as the research object, focusing on evaluating the improvement of fuel economy of multiple air tanks in different test cycles. Also theoretical analysis the benefits of extra boost on reducing turbo-lag to achieve better performance.
Technical Paper

Unthrottled Engine Operation using Variable Valve Actuation: The Impact on the Flow Field, Mixing and Combustion

2007-04-16
2007-01-1414
The effect on the intake flow field, air fuel mixing processes, thermodynamic performance and emissions output has been investigated for a range of valve operating profiles. A standard speed load point of 2000 rpm and 2.7 bar IMEP720° has been reached by throttling the intake whilst running standard cam profiles, by early closing of both inlet valves (EIVC) and by early closing of each inlet individually to generate bulk swirl motions within the cylinder. Data has been recorded at stoichiometric air fuel ratios for both direct injection and port fuelled operation. The valve profiles have been applied to two single cylinder homogeneous gasoline direct injection (GDI) spark ignition engines, developed to investigate the potential of controlling engine load by limiting the inducted air mass using fully variable valve timing (FVVT) to reduce pumping losses at part load.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Technical Paper

Towards Optimal Performance of a Thermoelectric Generator for Exhaust Waste Heat Recovery from an Automotive Engine

2018-04-03
2018-01-0050
Thermoelectric generator has very quickly become a hot research topic in the last five years because its broad application area and very attractive features such as no moving parts, low maintenance, variety of thermoelectric materials that total together cover a wide temperature range. The biggest disadvantage of the thermoelectric generator is its low conversion efficiency. So that when design and manufacture a thermoelectric generator for exhaust waste heat recovery from an automotive engine, the benefit of fuel consumption from applying a thermoelectric generator would be very sensitive to the weight, the dimensions, the cost and the practical conversion efficiency. Additionally, the exhaust gas conditions vary with the change of engine operating point. This creates a big challenge for the design of the hot side heat exchanger in terms of optimizing the electrical output of the thermoelectric generator during an engine transient cycle.
Technical Paper

Towards In-Cylinder Flow Informed Engine Control Strategies Using Linear Stochastic Estimation

2019-04-02
2019-01-0717
Many modern I.C. engines rely on some form of active control of injection, timing and/or ignition timing to help combat tailpipe out emissions, increase the fuel economy and improve engine drivability. However, development of these strategies is often optimised to suit the average cycle at each condition; an assumption that can lead to sub-optimal performance, especially an increase in particulate (PN) emissions as I.C. engine operation, and in-particular its charge motion is subject to cycle-to-cycle variation (CCV). Literature shows that the locations of otherwise repeatable large-scale flow structures may vary by as much 25% of the bore dimension; this could have an impact on fuel break-up and distribution and therefore subsequent combustion performance and emissions.
Technical Paper

The Potential of Fuel Metering Control for Optimising Unburned Hydrocarbon Emissions in Diesel Low Temperature Combustion

2013-04-08
2013-01-0894
Low temperature combustion (LTC) in diesel engines offers attractive benefits through simultaneous reduction of nitrogen oxides and soot. However, it is known that the in-cylinder conditions typical of LTC operation tend to produce high emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO), reducing combustion efficiency. The present study develops from the hypothesis that this characteristic poor combustion efficiency is due to in-cylinder mixture preparation strategies that are non-optimally matched to the requirements of the LTC combustion mode. In this work, the effects of three key fuel path parameters - injection fuel quantity ratio, dwell and injection timing - on CO and HC emissions were examined using a Central Composite Design (CCD) Design of Experiments (DOE) method.
Technical Paper

The Measurement of Liner - Piston Skirt Oil Film Thickness by an Ultrasonic Means

2006-04-03
2006-01-0648
The paper presents a novel method for the measurement of lubricant film thickness in the piston-liner contact. Direct measurement of the film in this conjunction has always posed a problem, particularly under fired conditions. The principle is based on capturing and analysing the reflection of an ultrasonic pulse at the oil film. The proportion of the wave amplitude reflected can be related to the thickness of the oil film. A single cylinder 4-stroke engine on a dyno test platform was used for evaluation of the method. A piezo-electric transducer was bonded to the outside of the cylinder liner and used to emit high frequency short duration ultrasonic pulses. These pulses were used to determine the oil film thickness as the piston skirt passed over the sensor location. Oil films in the range 2 to 21 μm were recorded varying with engine speeds. The results have been shown to be in agreement with detailed numerical predictions.
Technical Paper

The Influence of Thermoelectric Materials and Operation Conditions on the Performance of Thermoelectric Generators for Automotive

2016-04-05
2016-01-0219
An automotive engine can be more efficient if thermoelectric generators (TEG) are used to convert a portion of the exhaust gas enthalpy into electricity. Due to the relatively low cost of the incoming thermal energy, the efficiency of the TEG is not an overriding consideration. Instead, the maximum power output (MPO) is the first priority. The MPO of the TEG is closely related to not only the thermoelectric materials properties, but also the operating conditions. This study shows the development of a numerical TEG model integrated with a plate-fin heat exchanger, which is designed for automotive waste heat recovery (WHR) in the exhaust gas recirculation (EGR) path in a diesel engine. This model takes into account the following factors: the exhaust gas properties’ variation along the flow direction, temperature influence on the thermoelectric materials, thermal contact effect, and heat transfer leakage effect. Its accuracy has been checked using engine test data.
Technical Paper

The HOTFIRE Homogeneous GDI and Fully Variable Valve Train Project - An Initial Report

2006-04-03
2006-01-1260
There is a great deal of interest in new technologies to assist in reducing the CO2 output of passenger vehicles, as part of the drive to meet the limits agreed by the EU and the European Automobile Manufacturer's Association ACEA, itself a result of the Kyoto Protocol. For the internal combustion engine, the most promising of these include gasoline direct injection, downsizing and fully variable valve trains. While new types of spray-guided gasoline direct injection (GDI) combustion systems are finally set to yield the level of fuel consumption improvement which was originally promised for the so-called ‘first generation’ wall- and air-guided types of GDI, injectors for spray-guided combustion systems are not yet in production to help justify the added complication and cost of the NOx trap necessary with a stratified combustion concept.
Technical Paper

The Effect of EGR on Diesel Engine Wear

1999-03-01
1999-01-0839
As part of an ongoing programme of Exhaust Gas Recirculation (EGR) wear investigations, this paper reports a study into the effect of Exhaust Gas Recirculation, and a variety of interacting factors, on the wear rate of the top piston ring and the liner top ring reversal point on a 1.0 litre/cylinder medium duty four cylinder diesel engine. Thin Layer Activation (TLA - also known as Surface Layer Activation in the US) has been used to provide individual wear rates for these components when engine operating conditions have been varied. The effects of oil condition, EGR level, fuel sulphur content and engine coolant temperature have been investigated at one engine speed at full load. The effects of engine load and uncooled EGR have also been assessed. The effects of these parameters on engine wear are presented and discussed. When EGR was applied a significant increase in wear was observed at EGR levels of between 10% and 15%.
Technical Paper

The Effect of Cylinder De-Activation on Thermo-Friction Characteristics of the Connecting Rod Bearing in the New European Drive Cycle (NEDC)

2014-06-30
2014-01-2089
This paper presents an investigation of Cylinder De-Activation (CDA) technology on the performance of big end bearings. A multi-physics approach is used in order to take into account more realistic dynamic loading effects on the tribological behavior. The power loss, minimum film thickness and maximum temperature of big end bearings have been calculated during maneuver pertaining to the New European Driving Cycle (NEDC). Results show that bearing efficiency runs contrary to efficiency gained through combustion and pumping losses. Under CDA mode, the power loss of big end bearings is more than the power loss under engine normal mode. The problem is predominant at higher engine speeds and higher Brake mean Effective Pressures (BMEP) in active cylinders. It is also observed that the minimum film thickness is reduced under the CDA mode. This can affect wear performance. In addition, same behavior is noted for the maximum temperature rise which is higher under CDA.
Technical Paper

The Application of Phosphorescent Particle Tracking (PPT) to the Visualisation of Gas Flows in the Cylinder of a 1.8 Litre 4-Valve Engine

1999-03-01
1999-01-1109
This paper describes the application of a new technique, Phosphorescent Particle Tracking (PPT), to the visualisation of gas flow streams in the cylinder of an engine flow rig. This technique uses small phosphorescent tracer particles suspended in the air-stream to provide evidence of the gas flow profile as they are carried away from the plane of excitation. A two colour version of the technique is also presented. This latter technique is shown to have the potential to reveal the interaction or degree of stratification of two flow streams within the cylinder.
Journal Article

Spray Formation from Spark-Eroded and Laser-Drilled Injectors for DISI Engines with Gasoline and Alcohol Fuels

2014-10-13
2014-01-2745
One of the latest advancements in injector technology is laser drilling of the nozzle holes. In this context, the spray formation and atomisation characteristics of gasoline, ethanol and 1-butanol were investigated for a 7-hole spark eroded (SE) injector and its ‘direct replacement’ Laser-drilled (LD) injector using optical techniques. In the first step of the optical investigation, high-speed spray imaging was performed in a quiescent injection chamber with global illumination using diffused Laser light. The images were statistically analyzed to obtain spray penetration, spray tip velocity and spray ‘cone’ angles. Furthermore, droplet sizing was undertaken using Phase Doppler Anemometry (PDA). A single spray plume was isolated for this analysis and measurements were obtained across the plume at a fixed distance from the nozzle exit.
Technical Paper

Optical Diagnostics and CFD Validation of Jacket Cooling System Filling and the Occurrence of Trapped Air

2012-04-16
2012-01-1213
This paper reports the findings from an experimental investigation of the engine cooling jacket filling process for a medium duty off-highway diesel engine to characterise the physical processes that lead to the occurrence of trapped air. The motivation for the project was to provide knowledge and data to aid the development of a computational design tool capable of predicting the amount and location of trapped air in a cooling circuit following a fill event. To quantify the coolant filling process, a transparent replica of a section of the cylinder head cooling core was manufactured from acrylic to allow the application of optical diagnostic techniques. Experimentation has characterised the coolant filling process through the use of three optical techniques. These include the two established methods of High-Speed Imaging and Particle Image Velocimetry (PIV), as well as a novel approach developed for tracking the liquid-air interface during the fill event.
Technical Paper

Numerical Study of the Effects of Droplet Size Distribution on Fuel Transport and Air-Fuel Mixing in a Gasoline Direct-Injection Engine

2003-10-27
2003-01-3100
Numerical simulations are performed to investigate the effects of droplet size distribution on fuel transport and air-fuel mixing in a gasoline direct-injection (GD-I) engine. The engine grid was generated using the K3PREP grid generator and the simulations were carried out using the KIVA-3V Release 2 code. Three size distribution functions were considered, namely the Chi-squared (χ2) and two Rosin-Rammler functions with dispersion parameter, q of 3.5 and 7.5 (RRq=3.5 and RRq=7.5). A new subroutine, which arranges the fuel droplets into a spherical cloud of droplets, was developed to allow the in-cylinder placement of fuel droplets with different droplet size distribution. Two cases of intake valve timing were considered. Results of the simulation showed droplet size distribution to affect fuel dispersion under the influence of the in-cylinder gas flows.
Journal Article

Numerical Modelling of the In-Nozzle Flow of a Diesel Injector with Moving Needle during and after the End of a Full Injection Event

2015-09-06
2015-24-2472
The design of a Diesel injector is a key factor in achieving higher engine efficiency. The injector's fuel atomisation characteristics are also critical for minimising toxic emissions such as unburnt Hydrocarbons (HC). However, when developing injection systems, the small dimensions of the nozzle render optical experimental investigations very challenging under realistic engine conditions. Therefore, Computational Fluid Dynamics (CFD) can be used instead. For the present work, transient, Volume Of Fluid (VOF), multiphase simulations of the flow inside and immediately downstream of a real-size multi-hole nozzle were performed, during and after the injection event with a small air chamber coupled to the injector downstream of the nozzle exit. A Reynolds Averaged Navier-Stokes (RANS) approach was used to account for turbulence. Grid dependency studies were performed with 200k-1.5M cells.
Technical Paper

Non-Thermal Particulate Filter Regeneration Using Rapid Pulse Electric Discharges

2013-04-08
2013-01-0518
This research introduces a new, novel approach to reverse flow particulate filter regeneration enabled by rapidly pulsed electric discharges. The discharges physically dislodge particulate matter (PM) from the filter substrate and allow a very low reverse air flow to transport it to a soot handling system. The system is operable independent of filter temperature, does not expose the filter to high thermal stresses or temperatures, has no apparent upper limit for filter PM-mass level (regeneration of a filter up to 17 g/L has been demonstrated), and does not require any catalyst. The system is inherently scalable allowing application to monolithic filters of any size or shape and can be tailored to suit specific application requirements such as limits on maximum regeneration time or power consumption. For example a light duty application would require as little as 200-500W electrical power to regenerate a filter in less than ten minutes (i.e. passenger car GPF or DPF).
Technical Paper

Non-Spherical Particle Trajectory Modelling for Ice Crystal Conditions

2019-06-10
2019-01-1961
Aircraft icing is a significant issue for aviation safety. In this paper, recent developments for calculating the trajectory of non-spherical particles are used to determine the trajectory and impingement of ice crystals in aircraft icing scenarios. Two models are used, each formulated from direct numerical simulations, to give the drag, lift and torque correlations for various shaped particles. Previously, within the range of Reynolds number permitted in this study, it was only possible to model the trajectory and full rotational progression of cylindrical particles. The work presented in this paper allows for analysis of a wider range of ice shapes that are commonly seen in icing conditions, capturing the dynamics and behaviours specific to ice crystals. Previous limitations relate to the in ability to account for particle rotation and the dependency of force correlations on the measure of particle sphericity - which are now overcome.
X