Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

The Reduction of Mechanical and Thermal Loads in a High-Speed HD Diesel Engine Using Miller Cycle with Late Intake Valve Closing

2017-03-28
2017-01-0637
Mechanical load and thermal load are the two main barriers limiting the engine power output of heavy duty (HD) diesel engines. Usually, the peak cylinder pressure could be reduced by retarding combustion phasing while introducing the drawback of higher thermal load and exhaust temperature. In this paper, Miller cycle with late intake valve closing was investigated at high speed high load condition (77 kW/L) on a single cylinder HD diesel engine. The results showed the simultaneous reduction of mechanical and thermal loads. In the meanwhile, higher boosting pressure was required to compensate the Miller loss of the intake charge during intake and compression process. The combustion temperature, cylinder pressure, exhaust temperature and NOx emission were reduced significantly with Miller cycle at the operating condition. Furthermore, the combustion process, smoke number and fuel consumption were analysed.
Technical Paper

The Application of Controlled Auto-Ignition Gasoline Engines -The Challenges and Solutions

2019-04-02
2019-01-0949
Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to simultaneously reduce the fuel consumption and nitrogen oxides emissions of gasoline engines. However, narrow operating region in loads and speeds is one of the challenges for the commercial application of CAI combustion to gasoline engines. Therefore, the extension of loads and speeds is an important prerequisite for the commercial application of CAI combustion. The effect of intake charge boosting, charge stratification and spark-assisted ignition on the operating range in CAI mode was reviewed. Stratified flame ignited (SFI) hybrid combustion is one form to achieve CAI combustion under the conditions of highly diluted mixture caused by the flame in the stratified mixture with the help of spark plug.
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Increasing a Diesel Engine Power Output by Combustion System Optimization

2013-10-14
2013-01-2530
Displacement downsize is an exciting technology for IC engines in recent years in order to reduce both toxic emissions and fuel consumption simultaneously. The key point of this technology is to increase power density so that a downsized engine has power output high enough to replace a bigger displacement one. This paper describes a research into the power output enhancement by combustion system optimization. This research work was conducted on a single-cylinder diesel engine with a displacement of 2.8L. The aim of the research is to increase engine power output from current 73kW to 150kW. The power output was firstly boosted to 92kW by virtue of increasing intake pressure, reducing intake flow resistance, optimizing cam profile, modifying fuel injection system and optimizing combustion parameters. As a result, a satisfied heat release pattern was obtained with the achievement of the power target.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

Effect of Injection Timing on Mixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector

2006-04-03
2006-01-0206
The application of controlled auto-ignition (CAI) combustion in gasoline direct injection (GDI) engines is becoming of more interest due to its great potential of reducing both NOx emissions and fuel consumption. Injection timing has been known as an important parameter to control CAI combustion process. In this paper, the effect of injection timing on mixture and CAI combustion is investigated in a single-cylinder GDI engine with an air-assisted injector. The liquid and vapour phases of fuel spray were measured using planar laser induced exciplex fluorescence (PLIEF) technique. The result shows that early injection led to homogeneous mixture but late injection resulted in serious stratification at the end of compression. CAI combustion in this study was realized by using short-duration camshafts and early closure of the exhaust valves. During tests, the engine speed was varied from 1200rpm to 2400rpm and A/F ratio from stoichiometric to lean limit.
Technical Paper

Effect of Geometric Structure of Cylinder Head on the Combustion Process in a Diesel Engine

2017-03-28
2017-01-0692
Due to increasingly stringent emission and fuel consumption regulations, diesel engines for vehicle are facing more and more technical challenges. Engine downsizing technology is the most promising measures to deal with these challenges at present. With the enhancement of power density, a small engine displacement with a high turbocharging technique becomes popular. In order to increase the intake mass flow rate on a downsizing diesel engine, the tilting axis of intake valve was chosen to enlarge the intake valve diameter and decrease the arc radius of intake ports. Thus cylinder head had to be redesigned to meet this demand. Geometry of cylinder head made a notable effect in organization of in-cylinder flow, fuel-air mixing quality and further combustion characteristics. 3-D CFD was a convenient and economical tool to explore effects of geometry of cylinder head on the combustion process.
Technical Paper

Developing a Fuel Stratification Concept on a Spark Ignition Engines

2007-04-16
2007-01-0476
A fuel stratification concept has been developed in a three-valve twin-spark spark ignition engine. This concept requires that two fuels or fuel components of different octane numbers (ON) be introduced into the cylinder separately through two independent inlet ports. They are then stratified into two regions laterally by a strong tumbling flow and ignited by the spark plug located in each region. This engine can operate in the traditional stratified lean-burn mode at part loads to obtain a good part-load fuel economy as long as one fuel is supplied. At high loads, an improved fuel economy might also be obtained by igniting the low ON fuel first and leaving the high ON fuel in the end gas region to resist knock. This paper gives a detailed description of developing the fuel stratification concept, including optimization of in-cylinder flow, mixture and combustion.
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
X