Refine Your Search

Topic

Author

Search Results

Journal Article

Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing

2014-04-01
2014-01-1185
The paper discusses the concept, design and final results from the ‘Ultra Boost for Economy’ collaborative project, which was part-funded by the Technology Strategy Board, the UK's innovation agency. The project comprised industry- and academia-wide expertise to demonstrate that it is possible to reduce engine capacity by 60% and still achieve the torque curve of a modern, large-capacity naturally-aspirated engine, while encompassing the attributes necessary to employ such a concept in premium vehicles. In addition to achieving the torque curve of the Jaguar Land Rover naturally-aspirated 5.0 litre V8 engine (which included generating 25 bar BMEP at 1000 rpm), the main project target was to show that such a downsized engine could, in itself, provide a major proportion of a route towards a 35% reduction in vehicle tailpipe CO2 on the New European Drive Cycle, together with some vehicle-based modifications and the assumption of stop-start technology being used instead of hybridization.
Technical Paper

The Effects of Engine Thermal Conditions on Performance, Emissions and Fuel Consumption

2010-04-12
2010-01-0802
Engine thermal management systems (TMS) are gaining importance in engine development and calibration to achieve low fuel consumption and meet future emissions standards. To benefit from their full potential, a thorough understanding of the effects on engine behavior is necessary. Steady state tests were performed on a 2.0L direct injection diesel engine at different load points. A design of experiments (DoE) approach was used to conduct exhaust gas recirculation (EGR) and injection timing swings at different coolant temperatures. The effect of the standard engine controller and calibration was observed during these tests. The injection timing strategy included a significant dependency on coolant temperature, retarding injection by about 3° crank angle between coolant temperatures of 70°C and 86°C. In contrast, EGR strategy was essentially independent of coolant temperature, though physical interactions were present due in part to the EGR cooler.
Technical Paper

The Effect of Hydraulic Circuit Design and Control on the Efficiency of a Continuously Variable Transmission

1996-08-01
961797
As part of a larger programme of work on the integrated control of engine and transmissions a study has been made of the control aspects of the transmission with a detailed investigation of the hydraulic circuit. The requirements of the broader programme necessitated an electrical input for the transmission control and a test bed version was successfully modified with electro-hydraulic valves. Attention to detail in the design of the hydraulic circuit and the control of operating pressure can bring significant benefits to the transmission efficiency with consequent beneficial effects on fuel economy. This paper investigates several aspects of the components used and their effect on efficiency, in particular pump sizing. This investigation is illustrated with results from a computer simulation of the system. Possible improvements through a modified control strategy for the belt pressure are also proposed with steady state results obtained experimentally from the test bed transmission.
Technical Paper

The Effect of Forced Cool Down on Cold Start Test Repeatability

2009-06-15
2009-01-1976
Increasing the number of cold-start engine cycles which could be run in any one day would greatly improve the productivity of an engine test facility. However with the introduction of forced cooling procedures there is the inherent risk that test-to-test repeatability will be affected. Therefore an investigation into the effects caused by forced cooling on fuel consumption and the temperature distribution through the engine and fluids is essential. Testing was completed on a 2.4 litre diesel engine running a cold NEDC. The test facility utilises a basic ventilation system, which draws in external ambient air, which is forced past the engine and then drawn out of the cell. This can be supplemented with the use of a spot cooling fan. The forced cool down resulted in a much quicker cool down which was further reduced with spot cooling, in the region of 25% reduction.
Technical Paper

Testing of a Modern Wankel Rotary Engine - Part I: Experimental Plan, Development of the Software Tools and Measurement Systems

2019-01-15
2019-01-0075
Wankel rotary engines are becoming an increasingly popular area of research with regard to their use as a range extender in the next generation of Hybrid Electric Vehicle (HEV). Due to their simple design, lightness, compactness and very favourable power-to-weight ratio, they represent one of the best alternative solutions to classic reciprocating piston engines. On the other hand, current Wankel engines still need improvements in terms of specific fuel consumption and emissions. This paper describes an innovative approach for the assessment of the performance of a modern rotary engine. All the experimental activities will be carried out within the Innovate UK funded ADAPT Intelligent Powertrain project led by Westfield Sportscars Limited.
Journal Article

SuperGen on Ultraboost: Variable-Speed Centrifugal Supercharging as an Enabling Technology for Extreme Engine Downsizing

2015-04-14
2015-01-1282
The paper discusses investigations into improving the full-load and transient performance of the Ultraboost extreme downsizing engine by the application of the SuperGen variable-speed centrifugal supercharger. Since its output stage speed is decoupled from that of the crankshaft, SuperGen is potentially especially attractive in a compound pressure-charging system. Such systems typically comprise a turbocharger, which is used as the main charging device, compounded at lower charge mass flow rates by a supercharger used as a second boosting stage. Because of its variable drive ratio, SuperGen can be blended in and out continuously to provide seamless driveability, as opposed to the alternative of a clutched, single-drive-ratio positive-displacement device. In this respect its operation is very similar to that of an electrically-driven compressor, although it is voltage agnostic and can supply other hybrid functionality, too.
Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

2019-09-09
2019-24-0153
The European Particle Measurement Program (PMP) defines the current standard for measurement of particle number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles – i.e. smaller than 23 nm – which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50 % but there remains a lot of uncertainty.
Technical Paper

Simulation Study of Divided Exhaust Period for a Regulated Two-stage Downsized SI Engine

2014-10-13
2014-01-2550
The Divided Exhaust Period (DEP) concept is an approach which has been proved to significantly reduce the averaged back pressure of turbocharged engines whilst still improving its combustion phasing. The standard layout of the DEP system comprises of two separately-functioned exhaust valves with one valve feeding the blow-down pulse to the turbine whilst the other valve targeting the scavenging behaviour by bypassing the turbine. Via combining the characteristics of both turbocharged engines and naturally aspirated engines, this method can provide large BSFC improvement. The DEP concept has only been applied to single-stage turbocharged engines so far. However, it in its basic form is in no way restricted to a single-stage system. This paper, for the first time, will apply DEP concept to a regulated two-stage (R2S) downsized SI engine.
Technical Paper

Reduction of Steady State NOx Levels from an Automotive Diesel Engine Using Optimised VGT/EGR Schedules

1999-03-01
1999-01-0835
Currently, 80% of European diesel passenger cars are turbocharged and as emission standards become more stringent exhaust gas recirculation (EGR) will be the primary means of suppressing oxides of nitrogen (NOx). The lighter the load the greater will be the combustion tolerance to increased EGR flow rates and hence increased NOx suppression. Automotive diesel engines using wastegated turbochargers cannot recirculate above 50% EGR without some sort of “added” device or system, which is able to displace the inlet fresh air charge. This has been demonstrated by throttling the diesel intake to reduce the fresh air inlet manifold pressure so allowing more EGR flow by virtue of a higher exhaust-side pressure due the effects of the turbocharger. The method reported here investigates a different approach to increasing the EGR rates by replacing a fixed geometry turbocharger (FGT) with a variable geometry turbocharger, (VGT).
Technical Paper

Quantifying the Effects of Biodiesel Blend Ratio, at Varying Ambient Temperatures, on Vehicle Performance and Emissions

2009-06-15
2009-01-1893
A number of studies have been carried out examining the impact of biodiesel blend ratio on vehicle performance and emissions, however there is relatively little data available on the interaction between blend ratio and reduced ambient temperatures over the New European Drive Cycle (NEDC). This study examines the effects of increasing the blend ratio of Rapeseed Methyl Ester (RME) on the NEDC fuel consumption and tailpipe emissions of a vehicle equipped with a 2.0 litre common rail diesel engine, tested on a chassis dynamometer at ambient temperatures of 25, 10 & −5°C. This study found that under low temperature ambient conditions increasing blend ratios had a significant detrimental effect on vehicle particulate emissions reversing the benefits observed at higher ambient temperatures. Blend ratio was found to have minimal impact on hydrocarbon emissions regardless of ambient temperature while carbon monoxide and NOx emissions were found to increase by up to 20% and 5.5% respectively.
Technical Paper

Potential of a Controllable Engine Cooling System to Reduce NOx Emissions in Diesel Engines

2004-03-08
2004-01-0054
This paper investigates the potential for reduced NOx emissions from the integration of thermal factors into the Diesel engine calibration process. NOx emissions from Diesel engines have been shown to be sensitive to engine operating temperature, which is directly related to the level of cooling applied to the engine, in addition to the main engine operating parameters such as injection timing and EGR ratio. Experimental engine characterization of the main engine parameters against coolant temperature set point shows that engine cooling settings can extend the feasible lower limits of fuel consumption and emissions output from Diesel engine. With the adoption of an integrated calibration methodology including engine cooling set point, NOx emissions can be improved by up to 30% at crucial high speed/load operating points seen in the NEDC drive cycle with a minor reduction in fuel economy and small increase in CO output.
Technical Paper

Potential for Fuel Economy Improvements by Reducing Frictional Losses in a Pushing Metal V-Belt CVT

2004-03-08
2004-01-0481
This paper gives an overview of the development of a number of loss models for the pushing metal V-belt CVT. These were validated using a range of experimental data collected from two test rigs. There are several contributions to the torque losses and new models have been developed that are based upon relative motion between belt components and pulley deflections. Belt slip models will be proposed based upon published theory, expanded to take account of new findings from this work. The paper introduces a number of proposals to improve the efficiency of the transmission based on redesign of the belt geometry and other techniques to reduce frictional losses between components. These proposed efficiency improvements have been modelled and substituted into a complete vehicle simulation to show improvements in vehicle fuel economy over a standard European drive cycle.
Technical Paper

Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios

2018-04-03
2018-01-0269
Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (E.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection, higher compression ratios and turbo-charging/super-charging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes in order to fully exploit the possible benefits. Fuel octane number is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given quantity of intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
Journal Article

Octane Appetite: The Relevance of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI Engine

2014-10-13
2014-01-2718
Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.
Journal Article

Observations on the Measurement and Performance Impact of Catalyzed vs. Non Catalyzed EGR on a Heavily Downsized DISI Engine

2014-04-01
2014-01-1196
Increasingly stringent regulations and rising fuel costs require that automotive manufacturers reduce their fleet CO2 emissions. Gasoline engine downsizing is one such technology at the forefront of improvements in fuel economy. As engine downsizing becomes more aggressive, normal engine operating points are moving into higher load regions, typically requiring over-fuelling to maintain exhaust gas temperatures within component protection limits and retarded ignition timings in order to mitigate knock and pre-ignition events. These two mechanisms are counterproductive, since the retarded ignition timing delays combustion, in turn raising exhaust gas temperature. A key process being used to inhibit the occurrence of these knock and pre-ignition phenomena is cooled exhaust gas recirculation (EGR). Cooled EGR lowers temperatures during the combustion process, reducing the possibility of knock, and can thus reduce or eliminate the need for over-fuelling.
Technical Paper

Mass Benefit Analysis of 4-Stroke and Wankel Range Extenders in an Electric Vehicle over a Defined Drive Cycle with Respect to Vehicle Range and Fuel Consumption

2019-04-02
2019-01-1282
The gradual push towards electric vehicles (EV) as a primary mode of transport has resulted in an increased focus on electric and hybrid powertrain research. One answer to the consumers’ concern over EV range is the implementation of small combustion engines as generators to supplement the energy stored in the vehicle battery. Since these range extender generators have the opportunity to run in a small operating window, some engine types that have historically struggled in an automotive setting have the potential to be competitive. The relative merits of two different engine options for range extended electric vehicles are simulated in vehicle across the WLTP drive cycle. The baseline electric vehicle chosen was the BMW i3 owing to its availability as an EV with and without a range extender gasoline engine.
Technical Paper

Integrated Cooling Systems for Passenger Vehicles

2001-03-05
2001-01-1248
Electric coolant pumps for IC engines are under development by a number of suppliers. They offer packaging and flexibility benefits to vehicle manufacturers. Their full potential will not be realised, however, unless an integrated approach is taken to the entire cooling system. The paper describes such a system comprising an advanced electric pump with the necessary flow controls and a supervisory strategy running on an automotive microprocessor. The hardware and control strategy are described together with the simulation developed to allow its calibration and validation before fitting in a B/C class European passenger car. Simulation results are presented which show the system to be controllable and responsive to deliver optimum fuel consumption, emissions and driver comfort.
Technical Paper

Inner-Insulated Turbocharger Technology to Reduce Emissions and Fuel Consumption from Modern Engines

2019-09-09
2019-24-0184
With more focus on real world emissions from light-duty vehicles, the interactions between engine and after-treatment are critical. For modern engines, most emissions are generated during the warm-up phase following a cold start. For Diesel engines this is exaggerated due to colder exhaust temperatures and larger aftertreatment systems. The De-NOx aftertreatment can be particularly problematic. Engine manufacturers are required to take measures to address these temperature issues which often result in higher fuel consumption (retarding combustion, increasing engine load or reducing the Diesel Air-fuel-ratio). In this paper we consider an inner-insulated turbocharger as an alternative, passive technology which aims to reduce the exhaust heat losses between the engine and the aftertreatment. Firstly, the concept and design of the inner-insulated turbocharger is presented.
Technical Paper

Influence of Coolant Temperature and Flow Rate, and Air Flow on Knock Performance of a Downsized, Highly Boosted, Direct-Injection Spark Ignition Engine

2017-03-28
2017-01-0664
The causes of engine knock are well understood but it is important to be able to relate these causes to the effects of controllable engine parameters. This study attempts to quantify the effects of a portion of the available engine parameters on the knock behavior of a 60% downsized, DISI engine running at approximately 23 bar BMEP. The engines response to three levels of coolant flow rate, coolant temperature and exhaust back pressure were investigated independently. Within the tested ranges, very little change in the knock limited spark advance (KLSA) was observed. The effects of valve timing on scavenge flow and blow through (the flow of fresh air straight into the exhaust system during the valve overlap period) were investigated at two conditions; at fixed inlet/exhaust manifold pressures, and at fixed engine torque. For both conditions, a matrix of 8 intake/exhaust cam combinations was tested, resulting in a wide range of valve overlap conditions (from 37 to -53°CA).
Technical Paper

Improving Heat Transfer and Reducing Mass in a Gasoline Piston Using Additive Manufacturing

2015-04-14
2015-01-0505
Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power densities. Thus, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
X