Refine Your Search


Search Results

Technical Paper

Statistical Analysis of Knock Intensity Probability Distribution and Development of 0-D Predictive Knock Model for a SI TC Engine

Knock is a non-deterministic phenomenon and its intensity is typically defined by a non-symmetrical distribution, under fixed operating conditions. A statistical approach is therefore the correct way to study knock features. Typically, intrinsically deterministic knock models need to artificially introduce Cycle-to-Cycle Variation (CCV) of relevant combustion parameters, or of cycle initial conditions, to generate different knock intensity values for a given operating condition. Their output is limited to the percentage of knocking cycles, once the user imposes an arbitrary knock intensity threshold to define the correlation between the number of knocking events and the Spark Advance (SA). In the first part of the paper, a statistical analysis of knock intensity is carried out: for different values of SA, the probability distributions of an experimental Knock Index (KI) are self-compared, and the characteristics of some percentiles are highlighted.
Technical Paper

Statistical Analysis of Indicating Parameters for Knock Detection Purposes

Specific power and efficiency of gasoline engines are influenced by factors such as compression ratio and Spark Advance (SA) regulation. These factors influence the combustion development over the crank angle: the trade-off between performance and the risk of irreversible damages is still a key element in the design of both high-performance (racing) and low-consumption engines. This paper presents a novel approach to the problem, with the objective of defining a damage-related and operating conditions-independent index. The methodology is based on the combined analysis of indicating parameters, such as Cumulated Heat Release (CHR), Indicated Mean Effective Pressure (IMEP) and 50% Mass Fraction Burned (MFB50), and typical knock detection parameters, estimated by means of the in-cylinder pressure sensor signal. Knocking combustions have several consequences, therefore they can be detected in many ways.
Technical Paper

Review of Combustion Indexes Remote Sensing Applied to Different Combustion Types

This paper summarizes the main studies carried out by the authors for the development of indexes for remote combustion sensing applicable to different combustion types, i.e. conventional gasoline and diesel combustions, diesel PCCI and dual fuel gasoline-diesel RCCI. It is well-known that the continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at complying with upcoming increasingly stringent regulations throughout the world, both for pollutants and CO2 emissions. Performing an efficient combustion control is crucial for efficiency increase and pollutant emissions reduction. Over the past years, the authors of this paper have developed several techniques to estimate the most important combustion indexes for combustion control, without using additional cylinder pressure sensors but only using the engine speed sensor (always available on board) and accelerometers (usually available on-board for gasoline engines).
Technical Paper

Remote Sensing Methodology for the Closed-Loop Control of RCCI Dual Fuel Combustion

The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at complying with upcoming increasingly stringent regulations throughout the world. Performing an efficient combustion control is crucial for efficiency increase and pollutant emissions reduction. These aspects are even more crucial for innovative Low Temperature Combustions (such as RCCI), mainly due to the high instability and the high sensitivity to slight variations of the injection parameters that characterize this kind of combustion. Optimal combustion control can be achieved through a proper closed-loop control of the injection parameters. The most important feedback quantities used for combustion control are engine load (Indicated Mean Effective Pressure or Torque delivered by the engine) and center of combustion (CA50), i.e. the angular position in which 50% of fuel burned within the engine cycle is reached.
Technical Paper

Remote Combustion Sensing Methodology for PCCI and Dual-Fuel Combustion Control

The increasing request for pollutant emissions reduction spawned a great deal of research in the field of innovative combustion methodologies, that allow obtaining a significant reduction both in particulate matter and NOx emissions. Unfortunately, due to their nature, these innovative combustion strategies are very sensitive to in-cylinder thermal conditions. Therefore, in order to obtain a stable combustion, a closed-loop combustion control methodology is needed. Prior research has demonstrated that a closed-loop combustion control strategy can be based on the real-time analysis of in-cylinder pressure trace, that provides important information about the combustion process, such as Start (SOC) and Center of combustion (CA50), pressure peak location and torque delivered by each cylinder. Nevertheless, cylinder pressure sensors on-board installation is still uncommon, due to problems related to unsatisfactory measurement long term reliability and cost.
Technical Paper

Real-Time Evaluation of IMEP and ROHR-related Parameters

Combustion control is one of the key factors to obtain better performance and lower pollutants emissions, for diesel, spark ignition and HCCI engines. This paper describes a real-time indicating system based on commercially available hardware and software, which allows the real-time evaluation of Indicated Mean Effective Pressure (IMEP) and Rate of Heat Release (ROHR) related parameters, such as 50%MFB, cylinder by cylinder, cycle by cycle. This kind of information is crucial for engine mapping and can be very important also for rapid control prototyping purposes. The project objective is to create a system able to process in-cylinder pressure signals in the angular domain without the need for crankshaft encoder, for example using as angular reference the signal coming from a standard equipment sensor wheel. This feature can be useful both for test bench and on-board tests.
Technical Paper

Primary Breakup Model for Turbulent Liquid Jet Based on Ligament Evolution

The overall performance of direct injection (DI) engines is strictly correlated to the fuel liquid spray evolution into the cylinder volume. More in detail, spray behavior can drastically affect mixture formation, combustion efficiency, cycle to cycle engine variability, soot amount, and lubricant contamination. For this reason, in DI engine an accurate numerical reproduction of the spray behavior is mandatory. In order to improve the spray simulation accuracy, authors defined a new atomization model based on experimental evidences about ligament and droplet formations from a turbulent liquid jet surface. The proposed atomization approach was based on the assumption that the droplet stripping in a turbulent liquid jet is mainly linked to ligament formations. Reynolds-averaged Navier Stokes (RANS) simulation method was adopted for the continuum phase while the liquid discrete phase is managed by Lagrangian approach.
Technical Paper

Parametric Analysis of the Effect of the Fluid Properties and the Mesh Setup by Using the Schnerr-Sauer Cavitation Model

The primary target of the internal combustion engines design is to lower the fuel consumption and to enhance the combustion process quality, in order to reduce the raw emission levels without performances penalty. In this scenario the direct injection system plays a key role for both diesel and gasoline engines. The spray dynamic behaviour is crucial in defining the global and the local air index of the mixture, which in turns affects the combustion process development. At the same time it is widely recognized that the spray formation is influenced by numerous parameters, among which also the cavitation process inside every single hole of the injector nozzle. The proper prediction of the cavitation development inside the injector nozzle holes is crucial in predicting the liquid jet emerging from them.
Technical Paper

Numerical Study of the Combustion Chamber Shape for Common Rail H.S.D.I. Diesel Engines

The Common-rail injection system has allowed achieving a more flexible fuel injection control in DI-diesel engines by permitting a free mapping of the start of injection, injection pressure, rate of injection. All these benefits have been gained by installing this device in combustion chambers born to work with the conventional distributor and in-line-pump injection systems. Their design was aimed to improve air-fuel mixing and therefore they were characterized by the adoption of high-swirl ports and re-entrant bowls. Experiments have shown that the high injection velocities induced by common rail systems determine an enhancement of the air fuel mixing. By contrast, they cause a strong wall impingement too. The present paper aims to exploit a new configuration of the combustion chamber more suited to CR injection systems and characterized by low-swirl ports and larger bowl diameter in order to reduce the wall impingement.
Technical Paper

Multicycle Simulation of the Mixture Formation Process of a PFI Gasoline Engine

The mixture composition heavily influences the combustion process of Port Fuel Injection (PFI) engines. The local mixture air-index at the spark plug is closely related to combustion instabilities and the cycle-by-cycle Indicated Mean Effective Pressure (IMEP) Coefficient of Variation (CoV) well correlates with the variability of the flame kernel development. The needs of reducing the engine emissions and consumption push the engine manufactures to implement techniques providing a better control of the mixture quality in terms of homogeneity and variability. Simulating the mixture formation of a PFI engine by means of CFD techniques is a critical issue, since involved phenomena are highly heterogeneous and a two phase flow must be considered. The aim of the paper is to present a multi-cycle methodology for the simulation of the injection and the mixture formation processes of high performance PFI engine, based on the validation of all the main physical sub-models involved.
Technical Paper

Modeling the Diesel Fuel Spray Breakup by Using a Hybrid Model

Diesel engine CFD simulation is challenged by the need to improve the accuracy in the spray modeling due to the strong influence played by spray dynamics on evaporation rate, flow field, combustion process and emissions. This paper aims to present a hybrid model able to describe both primary and secondary breakup of high-dense high-pressure sprays. According to this approach, the model proposed by Huh and Gosman is used to compute the atomization of the liquid jet (primary breakup) while a modified version of the TAB model of O'Rourke and Amsden is used for the secondary breakup. The atomization model considers the jet turbulence at the nozzle exit and the growth of unstable wave on the jet surface. In order to validate the hybrid model, a free non-evaporating high-pressure-driven spray at engine like conditions has been simulated. The accuracy of the breakup time evaluation has been improved by tuning the TAB constant Ck according to the Pilch's experimental correlations.
Journal Article

Model-Based Control of Test Bench Conditioning Systems

Engine test benches are crucial instruments to perform tests on internal combustion engines. Since many factors affect tests results, an engine test bench is usually equipped with several conditioning systems (oil, water and air temperature, air humidity, etc.), in order to maintain the controlled variables to the target values, throughout the test duration. The conditioning systems are often independently controlled by means of dedicated programmable logic controllers (PLC), but a centralized model-based management approach could offer several advantages in terms of promptness and accuracy. This work presents the application of such control methodology to oil, water, and HVAC (heating, ventilating, and air conditioning) conditioning systems, where each actuator is managed coupling model-based open loop controls to closed loop actions.
Technical Paper

Knock Indexes Thresholds Setting Methodology

Gasoline engines can be affected, under certain operating conditions, by knocking combustions: this is still a factor limiting engines performance, and an accurate control is required for those engines working near the knock limit, in order to avoid permanent damage. HCCI engines also need a sophisticated combustion monitoring methodology, especially for high BMEP operating conditions. Many methodologies can be found in the literature to recognize potentially dangerous combustions, based on the analysis of the in-cylinder pressure signal. The signal is usually filtered and processed, in order to obtain an index that is then be compared to the knock threshold level. Thresholds setting is a challenging task, since usually indexes are not intrinsically related to the damages caused by abnormal combustions events. Furthermore, their values strongly depend on the engine operating conditions (speed and load), and thresholds must therefore vary with respect to speed and load.
Technical Paper

Knock Control Based on Engine Acoustic Emissions: Calibration and Implementation in an Engine Control Unit

In modern turbocharged downsized GDI engines the achievement of maximum thermal efficiency is precluded by the occurrence of knock. In-cylinder pressure sensors give the best performance in terms of abnormal combustion detection, but they are affected by long term reliability issues and still constitute a considerable part of the entire engine management system cost. To overcome these problems, knock control strategies based on engine block vibrations or ionization current signals have been developed and are widely used in production control units. Furthermore, previous works have shown that engine sound emissions can be real-time processed to provide the engine management system with control-related information such as turbocharger rotational speed and knock intensity, demonstrating the possibility of using a multi-function device to replace several sensors.
Journal Article

Investigation on Pre-Ignition Combustion Events and Development of Diagnostic Solutions Based on Ion Current Signals

Pre-ignition combustions are extremely harmful and undesired, but the recent search for extremely efficient spark-ignition engines has implied a great increase of the in-cylinder pressure and temperature levels, forcing engine operation to conditions that may trigger this type of anomalous combustion much more frequently. For this reason, an accurate on-board diagnosis system is required to adopt protective measures, preventing engine damage. Ion current signal provides relevant information about the combustion process, and it results in a good compromise between cost, durability and information quality (signal to noise ratio levels). The GDI turbocharged engine used for this study was equipped with a production ion current sensing system, while in-cylinder pressure sensors were installed for research purposes, to better understand the pre-ignition phenomenon characteristics, and to support the development of an on-board diagnostic system solely based on ion current measurements.
Journal Article

Investigation of Water Injection Effects on Combustion Characteristics of a GDI TC Engine

This paper presents simulation and experimental results of the effects of intake water injection on the main combustion parameters of a turbo-charged, direct injection spark ignition engine. Water injection is more and more considered as a viable technology to further increase specific output power of modern spark ignition engines, enabling extreme downsizing concepts and the associated efficiency increase benefits. The paper initially presents the main results of a one-dimensional simulation analysis carried out to highlight the key parameters (injection position, water-to-fuel ratio and water temperature) and their effects on combustion (in-cylinder and exhaust temperature reduction and knock tendency suppression). The main results of such study have then been used to design and conduct preliminary experimental tests on a prototype direct-injection, turbocharged spark ignition engine, modified to incorporate a new multi-point water injection system in the intake runners.
Technical Paper

Injection Pattern Investigation for Gasoline Partially Premixed Combustion Analysis

Nowadays, compression-ignited engines are considered the most efficient and reliable technology for automotive applications. However, mainly due to the current emission regulations, that require increasingly stringent reductions of NOx and particulate matter, the use of diesel-like fuels is becoming a critical issue. For this reason, a large amount of research and experimentation is being carried out to investigate innovative combustion techniques suitable to simultaneously mitigate the production of NOx and soot, while improving engine efficiency. In this scenario, the combined use of compression-ignited engines and gasoline-like fuels proved to be very promising, especially in case the fuel is directly-injected in the combustion chamber at high pressure. The presented study analyzes the combustion process produced by the direct injection of gasoline in a compression-ignited light-duty engine.
Journal Article

Injection Pattern Design for Real Time Control of Diesel Engine Acoustic Emission

Upcoming more stringent emission regulations throughout the world pose a real challenge, especially in regard to Diesel systems for passenger cars, where the need of additional after-treatment has a big impact in terms of additional system costs and available packaging space. Therefore, the need for strategies that allow managing combustion towards lower emissions, that require a precise control of the combustion outputs, is definitely increasing. Acoustic emission of internal combustion engines contains a large amount of information related to engine behavior and working conditions. Mechanical noise and combustion noise are usually the main contributions to the noise produced by an engine. In particular, recent research from the same authors of this paper demonstrated that combustion noise can be used as an indicator of the combustion that is taking place inside the combustion chamber and therefore as a reference for the control strategy.
Technical Paper

Influence of Cylindrical, k, and ks Diesel Nozzle Shape on the Injector Internal Flow Field and on the Emerging Spray Characteristics

Today, multi-hole Diesel injectors can be mainly characterized by three different nozzle hole shapes: cylindrical, k-hole, and ks-hole. The nozzle hole layout plays a direct influence on the injector internal flow field characteristics and, in particular, on the cavitation and turbulence evolution over the hole length. In turn, the changes on the injector internal flow correlated to the nozzle shape produce immediate effects on the emerging spray. In the present paper, the fluid dynamic performance of three different Diesel nozzle hole shapes are evaluated: cylindrical, k-hole, and ks-hole. The ks-hole geometry was experimentally characterized in order to find out its real internal shape. First, the three nozzle shapes were studied by a fully transient CFD multiphase simulation to understand their differences in the internal flow field evolutions. In detail, the attention was focused on the turbulence and cavitation levels at hole exit.
Journal Article

Individual Cylinder Air-Fuel Ratio Control for Engines with Unevenly Spaced Firing Order

The most recent European regulations for two- and three-wheelers (Euro 5) are imposing an enhanced combustion control in motorcycle engines to respect tighter emission limits, and Air-Fuel Ratio (AFR) closed-loop control has become a key function of the engine management system also for this type of applications. In a multi-cylinder engine, typically only one oxygen sensor is installed on each bank, so that the mean AFR of two or more cylinders rather than the single cylinder one is actually controlled. The installation of one sensor per cylinder is normally avoided due to cost, layout and reliability issues. In the last years, several studies were presented to demonstrate the feasibility of an individual AFR controller based on a single sensor. These solutions are based on the mathematical modelling of the engine air path dynamics, or on the frequency analysis of the lambda probe signal.